Math, asked by khushi974, 1 year ago

simplify root7 + root 2 upon 9+2 root 14

Attachments:

Answers

Answered by aquialaska
157

Answer:

\frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}=\frac{\sqrt{7}-\sqrt{2}}{5}

Step-by-step explanation:

we are given \frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}

We simplify it by rationalizing the denominator,

\implies\frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}\times\frac{9-2\sqrt{14}}{9-2\sqrt{14}}

\implies\frac{(\sqrt{7}+\sqrt{2})(9-2\sqrt{14})}{9^2-(2\sqrt{14})^2}

\implies\frac{\sqrt{7}(9-2\sqrt{14})+\sqrt{2}(9-2\sqrt{14})}{81-4\times14}

\implies\frac{9\sqrt{7}-14\sqrt{2}+9\sqrt{2}-4\sqrt{7}}{81-56}

\implies\frac{5\sqrt{7}-5\sqrt{2}}{25}

\implies\frac{\sqrt{7}-\sqrt{2}}{5}

Therefore,  \frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}=\frac{\sqrt{7}-\sqrt{2}}{5}

Answered by pinquancaro
58

Answer:

\frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}=\frac{\sqrt{7}-\sqrt{2}}{5}

Step-by-step explanation:

Given : Expression \frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}

To find : Simplify the expression?

Solution :

Expression \frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}

Rationalize the denominator by multiplying denominator with opposite sign,

=\frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}\times\frac{9-2\sqrt{14}}{9-2\sqrt{14}}

=\frac{(\sqrt{7}+\sqrt{2})(9-2\sqrt{14})}{9^2-(2\sqrt{14})^2}

=\frac{\sqrt{7}(9-2\sqrt{14})+\sqrt{2}(9-2\sqrt{14})}{81-4\times14}

=\frac{9\sqrt{7}-14\sqrt{2}+9\sqrt{2}-4\sqrt{7}}{81-56}

=\frac{5\sqrt{7}-5\sqrt{2}}{25}

=\frac{\sqrt{7}-\sqrt{2}}{5}

Therefore, \frac{\sqrt{7}+\sqrt{2}}{9+2\sqrt{14}}=\frac{\sqrt{7}-\sqrt{2}}{5}

Similar questions