simplify
sin1140°cos390°-cos780°sin750°
need answer in full method
Answers
QUESTION:
simplify
simplifysin1140°cos390°-cos780°sin750°
ANSWER:
sin(n × 360° + x) = sinx
cos(n × 360° + x) = cosx
sin1140° = sin(3 × 360° + 60°) = sin60°
cos390° = cos(1 × 360° + 30°) = cos30°
cos780° = cos(2 × 360° + 60°) = cos60°
sin750° = cos(2 × 360° + 30°) = sin30°
now, sin 1140° cos 390° - cos 780° sin 750° = sin60° cos30° - cos60° sin 30°
use formula, sinA.cosB - cosA.sinB = sin(A - B)
so, sin60° cos30° - cos60° sin30° = sin(60° - 30°) = sin30° = 1/2
hence answer is 1/2
Answer:
we know
sin( n×360°+ x) = sinx
cos ( n×360° + x) = cosx
sin1140° = sin( 3× 360°+60°) = sin60°
cos390° = cos( 1×360°+30°) =cos30°
cos780°=cos(2×360°+60°) = cos60°
sin750° = cos(2×360°+30°= sin30°
now, sin 1140° cos 390° - cos 780° sin 750° = sin 60° cos30° - cos60° sin30°
use formula sinA.cosB - cosA.sinB = sin(A-B)
so, sin60° cos30° - cos60° sin30° = sin(60°-30°) = sin30° = 1/2
hence the answer is 1/2.
- Hope it helps you
- Mark me as brainliest
- ❥ⁱᵗᶻรɳσωƒℓαҡε_07