Math, asked by britneymac2088, 1 year ago

Simplify tan(\frac{\pi}{4} + \theta) . tan(\frac{\pi}{4} - \theta)

Answers

Answered by abhi178
0
tan(\pi/4-\theta) tan(\pi/4-\theta)

we know, tan(A - B) = (tanA - tanB)/(1 + tanA.tanB)

so, tan(\pi/4-\theta)=\frac{tan\pi/4-tan\theta}{1+tan\pi/4tan\theta}

\because tan\frac{\pi}{4}=1

\therefore tan(\pi/4-\theta)=\frac{tan\pi/4-tan\theta}{1+tan\pi/4tan\theta}\\\\=\frac{1-tan\theta}{1+tan\theta}

similarly, tan(π/4+\theta)=\frac{1+tan\theta}{1-tan\theta}

now, tan(\pi/4-\theta) tan(\pi/4-\theta)=\frac{1-tan\theta}{1+tan\theta}\frac{1+tan\theta}{1-tan\theta}

= \frac{(1-tan\theta)(1+tan\theta)}{(1+tan\theta)(1-tan\theta)}

= \frac{1-tan^2\theta}{1+tan^2\theta}

we know, cos2x = (1 - tan²x)/(1 + tan²x)

so, \frac{1-tan^2\theta}{1+tan^2\theta}=cos2\theta

hence, required answer is cos2\theta
Answered by MaheswariS
0

Answer:

1

Step-by-step explanation:

Formula used:

tan(A-B)=\frac{tanA-tanB}{1+tanA\:tanB}\\\\tan(A+B)=\frac{tanA+tanB}{1-tanA\:tanB}


tan(\frac{\pi}{4}+\theta)\:tan(\frac{\pi}{4}+\theta)

=\frac{tan(\frac{\pi}{4})+tan\theta}{1-tan(\frac{\pi}{4})tan\theta}\:.\frac{tan(\frac{\pi}{4})-tan\theta}{1+tan(\frac{\pi}{4})tan\theta}

=\frac{1+tan\theta}{1-tan\theta}\:\frac{1-tan\theta}{1+tan\theta}=1




Similar questions
Math, 1 year ago