Simplify:
Answers
Answer:
hello ,
Here is your solution :-
After simply the above expression we get -
{(x^2019 - 1)(x^2 + x +1)}/ (x^2017 - 1)
(x^2021 + x^2020 + x^2019-x^2-x-1)
=-------------------------------------------------------
(x^2017 - 1)
ans...
Thank you!!!!!
#follow me
Step-by-step explanation:
Since x^{2}+x+1=0x
2
+x+1=0
Consider (x^{3}-1)(x
3
−1)
Using the identity (a^{3}-b^{3})=(a-b)(a^{2}+ab+b^{2})(a
3
−b
3
)=(a−b)(a
2
+ab+b
2
)
(x^{3}-1)=(x-1)(x^{2}+x+1)(x
3
−1)=(x−1)(x
2
+x+1)
Now, \frac{(x^{3}-1)}{x-1}=(x^{2}+x+1)
x−1
(x
3
−1)
=(x
2
+x+1)
Since, (x^{2}+x+1)=0(x
2
+x+1)=0
\frac{(x^{3}-1)}{x-1}=0
x−1
(x
3
−1)
=0
{(x^{3}-1)}=0(x
3
−1)=0
{x^{3}}=1x
3
=1
so, x= 1
Now, we will find the value of x^{2015}+x^{2016}x
2015
+x
2016
= 1^{2015}+1^{2016}1
2015
+1
2016
= 1 + 1
= 2
So, the value of the given expression is 2.