Simplify :
Answers
Solution
Given:-
- 2√6/(√2+√3) + 6√2/(√6+√3) - 8√3/(√6+√2)
Find:-
- Value of given terms
Explanation
☞2√6/(√2+√3) + 6√2/(√6+√3) - 8√3/(√6+√2)
Rationalize denominators of all term
➠ 2√6(√2-√3)/(√2-√3)(√2+√3) + 6√2(√6-√3)/(√6-√3)(√6+√3) - 8√3.(√6-√2)/(√6-√2)(√6+√2)
☛ Using required Formula
★ (x-y)(x+y) = x² - y²
So,
➠ 2√6.(√2-√3)/[(√2)²-(√3)³] + 6√2(√6-√3)/[(√6)²-(√3)²] - 8√3.(√6-√2)/[(√6)²-(√2)²]
➠ 2√6(√2-√3)/(2-3) + 6√2(√6-√3)/(6-3) - 8√3.(√6-√2)/(6-2)
➠ 2√6.(√3-√2) + 2√2.(√6-√3) - 2√3.(√6-√2)
➠ 2.√18 - 2√12 + 2.√12 - 2.√6 - 2.√18 + 2.√6
➠ ( 2.√18 - 2.√18) + (2.√12 - 2.√12) + (2.√16 - 2.√16)
➠ 0 + 0 + 0
➠ 0 [ Ans.]
________________
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
✮ Simplify...
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
Rationalize the denominator...
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
---➣
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
---➣ 2√6 × (√3-√2) + 2√2 × (√6-√3) - 2√3 × (√6-√2)
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
---➣ 2 × √18 - 2√12 + 2 × √12 - 2.√6 - 2 × √18 + 2 × √6
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
---➣ ( 2 × √18 - 2 ×√18) + (2 × √12 - 2 × √12) + (2 × √16 - 2 × √16)
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀
---➣ 0 + 0 + 0
⠀⠀⠀⠀ ⠀ ⠀⠀ ⠀⠀⠀