Math, asked by Saby123, 10 months ago

Simplify :

 \frac{ \sqrt{1 + a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }  -  \:  \frac{1 - a}{ \sqrt{1 -  {a}^{2} }  \: +  \: a - 1 }

a is not equal to 0.​

Answers

Answered by rishu6845
12

Answer:

\boxed{\huge{1}}

Step-by-step explanation:

\bold{To \: find}\longrightarrow \:  \:  \: value \: of \\  \dfrac{ \sqrt{1 + a} }{ \sqrt{1  +  a}  -  \sqrt{1 - a} }  -  \dfrac{(1 - a)}{ \sqrt{1 - a^{2} }  + (a - 1)}

\bold{Concept \: used}\longrightarrow \\ 1)( \sqrt{x} \:  ) ^{2}  = x \\

\bold{Soution}\longrightarrow \\  \dfrac{ \sqrt{1 + a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }  -  \dfrac{1 - a}{ \sqrt{1 -  {a}^{2}  }  + (a - 1)}

 =  \dfrac{  \sqrt{1 + a}  }{ \sqrt{1 + a} -  \sqrt{1 - a}  }  -  \dfrac{( \:  \sqrt{1 - a}  \: ) ^{2} }{ \sqrt{(1) ^{2} -  ({a})^{2}  } - (1 - a) }

 =  \dfrac{ \sqrt{1 + a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }  -  \dfrac{ ( \: { \sqrt{1 - a} \: ) }^{2} }{ \sqrt{(1 + a) \: (1 - a)} -  {(  \: \sqrt{1 - a} \: ) }^{2}  }

 =  \dfrac{ \sqrt{1 + a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }  -  \dfrac{ ( \: { \sqrt{1 - a} \: ) }^{2} }{ \sqrt{(1 + a) \: (1 - a)} -  {(  \: \sqrt{1 - a} \: ) }^{2}  }

taking \:  \sqrt{1 - a} \: common \: in \\ second \: term \: numerator  \\  =  \dfrac{ \sqrt{1 + a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }  -  \dfrac{ { (\sqrt{1 - a} })^{2} }{ \sqrt{1 - a} \: ( \sqrt{1 + a}  -  \sqrt{1 - a} \:   )}

  \sqrt{1 - a} \:  cancel \: out \: from \: second \: term \: numerator \: and \: denominator

 =  \dfrac{ \sqrt{1 + a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }  -  \dfrac{ \sqrt{1 - a} }{ \sqrt{1 + a}  -  \sqrt{1 - a} }

 =  \dfrac{ \sqrt{1 + a} - \sqrt{1 - a}  }{ \sqrt{1 + a}  -  \sqrt{1 - a} }

 = 1

Answered by Nereida
10

Answer:

\mapsto\tt{\dfrac{\sqrt{1 + a}}{ \sqrt{1 + a}  -  \sqrt{1 - a}} -  \dfrac{1 - a}{ \sqrt{1 - {a}^{2}} + a - 1}}

Solving it,

\mapsto\tt{\dfrac{\sqrt{1 + a}}{ \sqrt{1 + a} - \sqrt{1 - a}}  -  \dfrac{ {( \sqrt{1 - a} )}^{2} }{ \sqrt{ {1}^{2} -  {a}^{2}  } - (1 - a)}}

By √(x)² = x.

\mapsto\tt{\dfrac{\sqrt{1 + a}}{ \sqrt{1 + a} - \sqrt{1 - a}}  -  \dfrac{ {( \sqrt{1 - a} )}^{2} }{ \sqrt{ (1+a)(1-a)  } - {(\sqrt{(1 - a)})}^{2}}}

\mapsto\tt{\dfrac{\sqrt{1 + a}}{ \sqrt{1 + a} - \sqrt{1 - a}}  -  \dfrac{\sqrt{1 - a}\times \sqrt{1-a}}{ \sqrt{1-a}(\sqrt{1+a}-\sqrt{1-a})}}

\mapsto\tt{\dfrac{\sqrt{1 + a}}{ \sqrt{1 + a} - \sqrt{1 - a}}  -  \dfrac{ \sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}}

By, LCM.

\mapsto\tt\cancel{\dfrac{\sqrt{1+a}-\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}}

\mapsto\tt{1}

\rule{200}

Similar questions