Math, asked by Bhushunb, 1 day ago

Simplify: \frac{\sqrt{3} + \sqrt{27} + \sqrt{75} + \sqrt{147} +\sqrt{243} +\sqrt{363} }{3\sqrt{3} }

Answers

Answered by shaswat8080
1

Step-by-step explanation:

Given that

 \frac{ \sqrt{3} +  \sqrt{27} +  \sqrt{75}   +  \sqrt{147} +  \sqrt{243}  +  \sqrt{363}   }{3 \sqrt{3} }

To simplify it

Solution

As given expression we can write as

 \frac{ \sqrt{3}  +  \sqrt{3 \times 9} +  \sqrt{3 \times 25}   +  \sqrt{3 \times 49}  +  \sqrt{3 \times 81} +  \sqrt{3 \times 121}  }{3 \sqrt{3} }

as 9,25,49,81 and 121 are square of 3,5,7,9 and 11 respectively

 \frac{ \sqrt{3} + 3 \sqrt{3}   + 5 \sqrt{3}  + 7 \sqrt{3} + 9 \sqrt{3} + 11 \sqrt{3}   }{3 \sqrt{3} }

now we can take common

 \frac{(1 + 3 + 5 + 7 + 9 + 11)  \times  \sqrt{3} }{3 \sqrt{3} }

by addition we get

 \frac{36 \sqrt{3} }{3 \sqrt{3} }

by division we get

12

hence this is the answer.

Similar questions