Math, asked by RealPoet, 11 months ago

Simplify :

 \sf a) \: (2 \sqrt{2} - \sqrt{3} )(2 \sqrt{2} + 3)

 \sf b) \: (4 \sqrt{6} - 2 \sqrt{7} )(4 \sqrt{6} + 7)

Please Do It !

Answers

Answered by Anonymous
14

Given :-

 \sf a) \: (2 \sqrt{2} - \sqrt{3} )(2 \sqrt{2} + 3)

 \sf b) \: (4 \sqrt{6} - 2 \sqrt{7} )(4 \sqrt{6} + 7)

Solution :-

First Take one number and multiply with whole then take another and also multiply with whole.

 (a + b) ( a - c)

 a ( a  -c) +b (a-c)

 a^2 -ac + ab - bc

Now, the given values are just like this form,

1)

 ( 2\sqrt{2} - \sqrt{3} )(2\sqrt{2}+3 )

 2\sqrt{2}(2\sqrt{2} + 3)-\sqrt{3}(2\sqrt{2} + 3)

 (2\sqrt{2})^2 + 3(2\sqrt{2}) - \sqrt{3} (\times 2\sqrt{2})- \sqrt{3}(3)

\boxed{\sf\red{  8 + 6\sqrt{2} - 2\sqrt{6}-3\sqrt{3}}}

Now,

2)

 \sf b) \: (4 \sqrt{6} - 2 \sqrt{7} )(4 \sqrt{6} + 7)

 4\sqrt{6}(4\sqrt{6}+7) -2\sqrt{7}(4\sqrt{6}+7)

 (4\sqrt{6}^2 ) + 4\sqrt{6}(7) -2\sqrt{7}(4\sqrt{6} ) -2\sqrt{7}(7)

\boxed{\sf\red{  96 + 28\sqrt{6} - 8\sqrt{42}-14\sqrt{7}}}

Answered by Blaezii
11

Explanation:

Given Problem:

\sf a)\: (2\sqrt{2} - \sqrt{3})\:(2\sqrt{2} + 3)

\sf b)\:(4\sqrt{6} - 2\sqrt{7})\:(4\sqrt{6} +7)

Solution:

The step 1 is:

Take one number and multiply with whole then take another and also multiply with whole.

\implies\ (a+b)(a-c)

a(a-c)+b(a-c)

a^2-ac+ab-bc

Now,

Do same (form) with given values:

\sf a)\: (2\sqrt{2} - \sqrt{3})\:(2\sqrt{2} + 3)

\implies\ 2\sqrt{2}(2\sqrt{2}+3) - \sqrt{3}   (2\sqrt{2}+3)

\implies\ (2\sqrt{2})^2+3(2\sqrt{2} ) -\sqrt{3} (\times2\sqrt{2)}- \sqrt{3}(3)

\implies\ \sf 8+6\sqrt{2} -2\sqrt{6}- 3 \sqrt{3}

Now,

\sf b)\:(4\sqrt{6} - 2\sqrt{7})\:(4\sqrt{6} +7)

\implies\ 4 \sqrt{6}(4 \sqrt {6}+7)-2\sqrt{7}(4 \sqrt {6} +7)

\implies\ (4 \sqrt{6}^2) + 4\sqrt{6}(7) - 2 \sqrt{7}(4 \sqrt {6}) -2 \sqrt{7}(7)

\sf 96+28 \sqrt {6}-8 \sqrt {42}-14 \sqrt{7}

Similar questions