Math, asked by RushiSolanki, 1 year ago

simplify :
 \sqrt[4]{16} - 8 \sqrt[3]{125} +15 \sqrt[5]{32} +  \sqrt{576}

Answers

Answered by TheCommando
20

Question:

Simplify:

 \sqrt[4]{16} - 8 \sqrt[3]{125} +15 \sqrt[5]{32} + \sqrt{576}

Solution:

 \sqrt[4]{16}= 2 \\ \sqrt[3]{125} = 5 \\ \sqrt[5]{32} = 2 \\ \sqrt{576} = 24

Putting values

 \sqrt[4]{16} - 8 \sqrt[3]{125} +15 \sqrt[5]{32} + \sqrt{576}

= 2 - 8(5) + 15(2) + 24

= 2 - 40 + 30 + 24

= 2 + 30 + 24 - 40

= 56 - 40

= 16

 \mathfrak{\large{\underline{\underline{Answer}}}}

16

Answered by AbhijithPrakash
9

Answer:

\sqrt[4]{16}-8\sqrt[3]{125}+15\sqrt[5]{32}+\sqrt{576}=16

Step-by-step explanation:

\sqrt[4]{16}-8\sqrt[3]{125}+15\sqrt[5]{32}+\sqrt{576}

\sqrt[4]{16}

\mathrm{Factor\:the\:number:\:}\:16=2^4

=\sqrt[4]{2^4}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt[4]{2^4}=2

=2

8\sqrt[3]{125}

\sqrt[3]{125}

\mathrm{Factor\:the\:number:\:}\:125=5^3

=\sqrt[3]{5^3}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

=5

=8\cdot \:5

\mathrm{Multiply\:the\:numbers:}\:8\cdot \:5=40

=40

15\sqrt[5]{32}

\sqrt[5]{32}

\mathrm{Factor\:the\:number:\:}\:32=2^5

=\sqrt[5]{2^5}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt[5]{2^5}=2

=2

=15\cdot \:2

\mathrm{Multiply\:the\:numbers:}\:15\cdot \:2=30

=30

\sqrt{576}

\mathrm{Factor\:the\:number:\:}\:576=24^2

=\sqrt{24^2}

\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a

\sqrt{24^2}=24

=24

=2-40+30+24

\mathrm{Add/Subtract\:the\:numbers:}\:2-40+30+24=16

=16

Similar questions