Math, asked by coolbuddy27, 4 months ago

simplify the above question​

Attachments:

Answers

Answered by RudranshuMishra7
2

 \sf\frac{ ({64)}^{ \frac{ - 1}{6}}   \times {(216)}^{ \frac{- 1}{3}  }  \times {(81)}^{ \frac{1}{4} }  }{ {(512)}^{ \frac{ - 1}{3}  } \times  {(16)}^{ \frac{1}{4} }    \times {(9)}^{ \frac{ - 1}{2} } }  \\  \\   \sf =\frac{ { {(2)}^{6 \times } }^{( \frac{ - 1}{6}) }  \times { (  {6})}^{ 3 \times( \frac{ - 1}{3}) }  \times  ({3})^{4 \times  \frac{1}{4} } }{ {(8)}^{3 \times(  \frac{ - 1}{3} )} \times  {(2)}^{4 \times  \frac{1}{4} }   \times  {(3)}^{2 \times ( \frac{ - 1}{2}) } }  \\  \\  =  \sf \frac{8 \times 3 \times 3}{2 \times 6 \times 2}  \\  \\  \sf =  \frac{4 \times 3}{2 \times 2}  \\  \\   \red{=   \sf 3}

NOTE : When the power will be negative the number will reciprocal.

During solving this question keep in mind that ;

  • 2^6 = 64

  • 6^3 = 216

  • 3^4 = 81

  • 8^3 = 512

  • 2^4 = 16

  • 3^2 = 9

I HOPE IT HELPS.

Answered by vipashyana1
0

Answer:

\frac{ {(64)}^{ \frac{( - 1)}{6} } \times  {(216)}^{ \frac{( - 1)}{3} } \times  {(81)}^{ \frac{1}{4} } }{ {(512)}^{ \frac{( - 1)}{3} } \times  {(16)}^{ \frac{1}{4} }  \times  {(9)}^{ \frac{ (- 1)}{2} }  }   = 3

Step-by-step explanation:

 \frac{ {(64)}^{ \frac{( - 1)}{6} } \times  {(216)}^{ \frac{( - 1)}{3} } \times  {(81)}^{ \frac{1}{4} } }{ {(512)}^{ \frac{( - 1)}{3} } \times  {(16)}^{ \frac{1}{4} }  \times  {(9)}^{ \frac{ (- 1)}{2} }  }  \\  =   \frac{ { (\frac{1}{64} )}^{ \frac{1}{6} } \times  { (\frac{1}{216}) }^{ \frac{1}{3} } \times {(81)}^{ \frac{1}{4} } }{ { (\frac{1}{512} )}^{ \frac{1}{3} }  \times  {(16)}^{ \frac{1}{4} } \times { (\frac{1}{9}) }^{ \frac{1}{2} } }  \\  =  \frac{  { {( \frac{1}{2} }^{6}) }^{ \frac{1}{6} }  \times  { { (\frac{1}{6} }^{3}) }^{ \frac{1}{3} } \times  { {(3}^{4} )}^{ \frac{1}{4} } }{ { { (\frac{1}{8} }^{3}) }^{ \frac{1}{3} }  \times  { ({2}^{4} )}^{ \frac{1}{4} } \times  { { (\frac{1}{3} }^{2} )}^{ \frac{1}{2} }  }   \\  =  \frac{ { (\frac{1}{2} )}^{6 \times  \frac{1}{6} }  \times { (\frac{1}{6}) }^{3 \times  \frac{1}{3} }  \times  {(3)}^{4 \times  \frac{1}{4} }  }{ {( \frac{1}{8}) }^{3 \times  \frac{1}{3} }  \times  {(2)}^{4 \times  \frac{1}{4} }  \times  { (\frac{1}{3}) }^{2 \times  \frac{1}{2} } }  \\  =  \frac{ \frac{1}{2}  \times  \frac{1}{6} \times  3}{ \frac{1}{8} \times 2 \times  \frac{1}{3} }  \\  =  \frac{ \frac{1}{2}  \times  \frac{1}{2} }{ \frac{1}{4} \times  \frac{1}{3}  }  \\  =  \frac{ \frac{1}{4} }{ \frac{1}{12} }  \\  =  \frac{1}{4}  \div  \frac{1}{12}  \\  =  \frac{1}{4}  \times 12 \\  = 3

Similar questions