Simplify the expreresion
a²+2a²(b²-4) -a²b²-b²
and find its value when a =5
b=-5
Answers
Answered by
279
=>a²+2a²(b²-4)-a²b²-b²
[a²-b²=(a+b)(a-b)]
=>a²+2a²(b²-2²)-a²b²-b²
=>a²+2a²[(b+2)(b-2)]-a²b²-b²
=>a²+2a²(b+2)(b-2)-a²b²-b²
When a=5 & b=-5
=>(5)²+2(5)²(-5+2)(-5-2)-(5)²(-5)²-(-5)²
=>25+50(-3)(-7)-625-25
=>25+1050-650
=>1075-650
=>425
If we solve through this :
=>25+50(-3)(-7)-625-25
=>25+1050-600
=>1075-600
=>475
Answered by
5
Answer:
a² + 2a² (b²-4) - a²b² - b²
➡️ a² + 2a²b² - 7a² - a²b² - b²
➡️ a² - 7a² + 2a²b² - a²b² - b²
➡️ -6a² + a²b² - b²
Put the value of a = 5 , b = -5 in the expression.
-6×(5)² + (5)²(-5)² - (-5)²
➡️ -6 × 25 + 25 × 25 - 25
➡️ -150 + 625 - 25
➡️ -150 + 600
➡️ 450
Similar questions