Math, asked by sofia2130, 12 days ago

simplify the expression
 (\sqrt[4]{5 }  -  \sqrt[3]{2})   (\sqrt[3]{5}  +  \sqrt[5]{2} )

Answers

Answered by seemamehra976
0

Step-by-step explanation:

Rationalize the denominator: \frac{\sqrt{3}}{\sqrt{7+\sqrt{5}}} \cdot \frac{\sqrt{7+\sqrt{5}}}{\sqrt{7+\sqrt{5}}}=\frac{\sqrt{3}\sqrt{7+\sqrt{5}}}{7+\sqrt{5}}

7+

5

3

7+

5

7+

5

=

7+

5

3

7+

5

.

\frac{\sqrt{3}\sqrt{7+\sqrt{5}}}{7+\sqrt{5}}

7+

5

3

7+

5

2 Rationalize the denominator: \frac{\sqrt{3}\sqrt{7+\sqrt{5}}}{7+\sqrt{5}} \cdot \frac{7-\sqrt{5}}{7-\sqrt{5}}=\frac{\sqrt{3}\sqrt{7+\sqrt{5}}(7-\sqrt{5})}{{7}^{2}-{\sqrt{5}}^{2}}

7+

5

3

7+

5

7−

5

7−

5

=

7

2

5

2

3

7+

5

(7−

5

)

.

\frac{\sqrt{3}\sqrt{7+\sqrt{5}}(7-\sqrt{5})}{{7}^{2}-{\sqrt{5}}^{2}}

7

2

5

2

3

7+

5

(7−

5

)

3 Simplify {7}^{2}7

2

to 4949.

\frac{\sqrt{3}\sqrt{7+\sqrt{5}}(7-\sqrt{5})}{49-{\sqrt{5}}^{2}}

49−

5

2

3

7+

5

(7−

5

)

4 Use this rule: {\sqrt{x}}^{2}=x

x

2

=x.

\frac{\sqrt{3}\sqrt{7+\sqrt{5}}(7-\sqrt{5})}{49-5}

49−5

3

7+

5

(7−

5

)

5 Simplify 49-549−5 to 4444.

\frac{\sqrt{3}\sqrt{7+\sqrt{5}}(7-\sqrt{5})}{44}

44

3

7+

5

(7−

5

)

Answered by Sofia2185
2

Answer:

Always keep a safe distance from the car in front, no matter how slowly they might be driving. Lay off the horn. Honking out of frustration won't solve any problems; it will just increase the stress level for everyone on the road.

heeyyyyyy

how are you??

Similar questions