Math, asked by dinesh9334896393, 9 months ago

simplify the following​

Attachments:

Answers

Answered by StarrySoul
22

Given :

• a² + 4a + x = (a+2)²

To Find :

• The value of x

Solution :

Solving RHS

 \longrightarrow \sf \:  (a+2) ^{2}

Using the identity :

 \bigstar \:  \boxed{ \sf \: (a + b )^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }

 \longrightarrow \sf \:  (a) ^{2} + 2(a)(2) +  (2) ^{2}

 \longrightarrow \sf \:  a ^{2}  + 4a + 4

Now,

  \longrightarrow \: \sf  \cancel{a}^{2} +  \cancel{  4a }+ x =  \cancel {a}^{2}  + \cancel{ 4a }+ 4

  \longrightarrow \: \sf  \large \boxed{ \red{ \sf \: x = 4}}

\therefore Value of x is 4

Few Useful Identities :

• (a+b)² = a² + 2ab + b²

• (a-b)² = a² - 2ab + b²

• (a+b)(a-b) = a² - b²

• (a+b+c)² = a² + b² + c² + 2ab + 2bc + 2ca

• (a+b)³ = a³ + b³ +3ab(a+b)

• (a-b)³ = a³ - b³ - 3ab(a-b)

• a³ + b³ = (a+b)(a² - ab + b²)

• a³ - b³ = (a-b)(a² + ab + b²)

• a³ + b³ + c³ -3abc = (a+b+c)(a² + b² + c² - ab - bc - ca)

• a³ + b³ + c³ -3abc = ½(a+b+c) {(a-b)² + (b-c)² + (c-a)² }

• If a + b + c = 0,then a³ + b³ + c³ = 3abc

Answered by Saby123
16

......

 \tt{\huge{\purple{ .................. }}}

QUESTION :

simplify the following..

See the above attachment.....

SOLUTION :

 { a } ^ 2 + 4a + x = { a + 2 } ^ 2  \\ \\ { a } ^ 2 + 4a + x = { a } ^ 2 + 4a + 4 \\ \\ =>  x = 4

Similar questions