Math, asked by spiderman82, 9 months ago

simplify the following............​

Attachments:

Answers

Answered by BrainlyTornado
31

QUESTION:

Simplify:

cos \ \theta\left[\begin{array}{cc}cos \ \theta&sin \ \theta\\ \\ -sin\ \theta&cos \ \theta\end{array}\right] \\ + sin \ \theta\left[\begin{array}{cc}sin \ \theta&-cos \ \theta\\ \\ cos\ \theta&sin \ \theta\end{array}\right]

ANSWER:

\left[\begin{array}{cc}1&0\\ \\0&1\end{array}\right]

GIVEN:

cos \ \theta\left[\begin{array}{cc}cos \ \theta&sin \ \theta\\ \\ -sin\ \theta&cos \ \theta\end{array}\right] \\ + sin \ \theta\left[\begin{array}{cc}sin \ \theta&-cos \ \theta\\ \\ cos\ \theta&sin \ \theta\end{array}\right]

TO FIND:

cos \ \theta\left[\begin{array}{cc}cos \ \theta&sin \ \theta\\ \\ -sin\ \theta&cos \ \theta\end{array}\right] \\ + sin \ \theta\left[\begin{array}{cc}sin \ \theta&-cos \ \theta\\ \\ cos\ \theta&sin \ \theta\end{array}\right]

EXPLANATION:

cos \ \theta\left[\begin{array}{cc}cos \ \theta&sin \ \theta\\ \\ -sin\ \theta&cos \ \theta\end{array}\right] \\ + sin \ \theta\left[\begin{array}{cc}sin \ \theta&-cos \ \theta\\ \\ cos\ \theta&sin \ \theta\end{array}\right]

Let \ A = \left[\begin{array}{cc}cos \ \theta&sin \ \theta\\ \\ -sin\ \theta&cos \ \theta\end{array}\right]

Let \ B =\left[\begin{array}{cc}sin \ \theta&-cos \ \theta\\ \\ cos\ \theta&sin \ \theta\end{array}\right]

cos \ \theta \times A=\left[\begin{array}{cc}cos^2 \ \theta&cos \ \theta \ sin \ \theta\\ \\ -sin\ \theta\ cos \ \theta&cos^2 \ \theta\end{array}\right]

sin \ \theta\times B = \left[\begin{array}{cc}sin^2 \ \theta&-sin \ \theta\ cos \ \theta\\ \\ cos\ \theta \ sin \ \theta&sin^2 \ \theta\end{array}\right]

Let\ cos \ \theta \times A+sin \ \theta \times B =\left[\begin{array}{cc}a_{11}&a_{12}\\ \\ a_{21}&a_{22}\end{array}\right]

a_{11}= sin^2\ \theta + cos^2\ \theta

a_{12}= sin \ \theta \ cos\ \theta-sin \ \theta \ cos\ \theta

a_{21}= sin \ \theta \ cos\ \theta-sin \ \theta \ cos\ \theta

a_{22}= sin^2\ \theta + cos^2\ \theta

\boxed{\bold{\large{sin^2 \ \theta + cos^2 \ \theta = 1}}}

a_{11} = 1

a_{12}=0

a_{21}=0

a_{22}= 1

Substituting these values

\left[\begin{array}{cc}1&0\\ \\0&1\end{array}\right]

\left[\begin{array}{cc}1&0\\ \\0&1\end{array}\right]= I

cos \ \theta\left[\begin{array}{cc}cos \ \theta&sin \ \theta\\ \\ -sin\ \theta&cos \ \theta\end{array}\right]\\ + sin \ \theta\left[\begin{array}{cc}sin \ \theta&-cos \ \theta\\ \\ cos\ \theta&sin \ \theta\end{array}\right]= I

Similar questions