Math, asked by gopaldev908, 7 months ago

simplify the following​

Attachments:

Answers

Answered by ItzArchimedes
1

Solution :-

We need to evaluate

  • a² ( b² - c² ) + b² ( c² - a² ) + c² ( a² - b² )

Simplifying ,

⇒ a² ( b² - c² ) + b² ( c² - a² ) + c² ( a² - b² )

⇒ a²b² - a²c² + b²c² - b²a² + c²a² - c²b²

⇒ a²b² - a²b² - a²c² + a²c² + b²c² - b²c²

⇒ 0 - 0 - 0

0

Hence , by evaluating ( - ) + ( - ) + ( - ) = 0

More information :-

Algebraic identities ,

  • ( a + b )( a - b ) = a² - b²
  • ( a + b )² = a² + b² + 2ab
  • ( a - b )² = a² + b² - 2ab
  • a² + b² = ( a + b )² - 2ab
  • ( a + b )³ = a³ + b³ + 3ab ( a + b )
  • ( a + b )³ = a³ + b³ + 3a²b + 3ab²
Answered by Anonymous
3

\huge \sf {\purple{\underline {\pink {\underline { Answer᭄\ }}}}}

{\huge{\underline{\small{\mathbb{\red{HOPE\:IT\:HELPS\:UH :)}}}}}}

Similar questions