Math, asked by sriyanjali42, 11 months ago

simplify the following expression:-
(i) (5+√7)(2+√5)
(ii) (5+√5)(5-√5)
(iii) (√3+√7)^2
(iv) (√11-√7)(√11+√7)​

Answers

Answered by NiksDwivedi
23

Hey there!!❤

_____________________

(1). (5 + √7)(2 + √5)

=> 5(2) + 5(√5) + √7(2) + √7(√5)

=> 10 + 5√5 + 2√7 + √35

(2). (5 + √5)(5 - √5)

=> (5)² - (√5)²

=> 25 - 5

=> 20

(3). (√3 + √7)²

=> (√3)² + (√7)² + 2(√3)(√7)

=> 3 + 7 + 2√21

=> 10 + 2√21

(4). (√11 - √7)(√11 + √7)

=> (√11)² - (√7)²

=> 11 - 7

=> 4

________________________________

HOPE IT HELPS YOU❤❤

#BeBrainLy❤


raj1862862: Hii
Answered by Anonymous
28
 \huge{\boxed{Answer}}

♦ Simplification of

(i)  (5 + \sqrt{7})(2 + \sqrt{5})

 = 5( 2 + \sqrt{5} ) + \sqrt{7}(2 + \sqrt{5})

 = 10 + 5 \sqrt{5} + 2 \sqrt{7} + \sqrt{ 35}



(ii)  (5 + \sqrt{5})(5 - \sqrt{5})

>> The above's equation is in the form of an Identity .

(a + b) (a - b)

• Let "5" be "a" and " \sqrt{5}" be "b" .

• Then by multiplying

 (a+b) (a-b)

 = a^2 - ab + ab - b^2

 = a^2 - b^2

♦ Now by substituting value

 = 5^2 - \sqrt{5}^2

 = 25 - 5

 = 20



(iii)  (\sqrt{3} + \sqrt{7} )^2

♦ Now by using Identity

 (a+b)^2 = a^2 + 2ab + b^2

♦ We will take

a =  \sqrt{3}

b =  \sqrt{7}

♦ Then

 (\sqrt{3} + \sqrt{7} )^2 = \sqrt{3}^2 + \sqrt{7}^2 + 2 \times \sqrt{3} \times \sqrt{7}

 = 3 + 7 + 2 \sqrt{21}

 = 10 + 2\sqrt{21}



(iv)  (\sqrt{11} - \sqrt{7})(\sqrt{11} + \sqrt{7})

>> The above's equation is in the form of an Identity .

(a - b) (a + b)

• Let "\sqrt{11}" be "a" and " \sqrt{7}" be "b" .

• Then by multiplying

 (a - b) (a+b)

 = a^2 + ab - ab - b^2

 = a^2 - b^2

♦ Now by substituting value

 = \sqrt{11}^2 - \sqrt{7}^2

 = 11 - 7

 = 4
Similar questions