Simplify the following expression Y = (A + B)(A + C' )(B' + C' )
Answers
Step-by-step explanation:
Y = (A+B)(A+C′)(B′+C′)
=(AA+AC′+AB+BC′)(B′+C′)
=(A+AC′+AB+BC′)(B′+C′)
=(A(1+C′+B)+BC′)(B′+C′)
=(A+BC′)(B′+C′)
=AB′+AC′+B′BC′+BC′C′
=AB′+AC′+0+BC′
=AB′+AC′+BC′
Y = (A + B)(A + C' )(B' + C' ) = AB' + AC' + BC'
Given:
- Y = (A + B)(A + C')(B' + C')
To Find:
- Simplify the expression
Solution:
- X + X' = 1
- X + 1 = X
- X.X' = 0
- X. X = X
- X'.X' = X'
- X + X =X
- X' + X' = X'
- X. 1 = X
Y = (A + B)(A + C' )(B' + C' )
Product of First two brackets
Y = (AA + AC' + BA + BC')(B' + C')
Use AA = A
Y = (A + AC' + BA + BC')(B' + C')
Use A = A.1
Y = (A.1 + AC' + BA + BC')(B' + C')
Take A common
Y = (A(1 + C' + B) + BC') (B' + C')
Use 1 + C' + B = 1
Y = (A.1 + BC')(B' + C')
Y = (A + BC')(B' + C')
Take Product
Y = AB' + AC' + BC'B' + BC'C'
Y = AB' + AC' + C'BB' + BC'C'
Use BB' = 0 and C'C' = C'
Y = AB' + AC' + C'.0 + BC'
Use C'.0 = 0
Y = AB' + AC' + 0 + BC'
Y = AB' + AC' + BC'
Hence (A + B)(A + C' )(B' + C' ) = AB' + AC' + BC'