Math, asked by StarTbia, 1 year ago

Simplify the following into their lowest forms.

Attachments:

Answers

Answered by Robin0071
0
Solution:-
given by:-
 \frac{ {x}^{4}  +  {x}^{2} + 1 }{ {x}^{2}  + x + 1}  \\  \frac{ {( {x}^{2}) }^{2}  + 2 {x}^{2}  + 1 -  {x}^{2} }{ {x}^{2} + x + 1 }  \\    \frac{ {( {x}^{2} + 1) }^{2}  -  {x}^{2} }{( {x}^{2} + x + 1) }  \\  \frac{( {x}^{2} + x + 1)( {x }^{2}  - x + 1) }{( {x}^{2} + x + 1) }  \  \  \\  =   ({x}^{2}  - x + 1)ans
☆i hope its help☆
Answered by rohitkumargupta
0
HELLO DEAR,
 \mathbf{\frac{ {x}^{4} + {x}^{2} + 1 }{ {x}^{2} + x + 1} } \\ \\  \mathbf{\frac{ {( {x}^{2}) }^{2} + 2 {x}^{2} + 1 - {x}^{2} }{ {x}^{2} + x + 1 } } \\ \\ \mathbf{ \frac{ {( {x}^{2} + 1) }^{2} - {x}^{2} }{( {x}^{2} + x + 1) } } \\ \\  \mathbf{\frac{( {x}^{2} + x + 1)( {x }^{2} - x + 1) }{( {x}^{2} + x + 1) } }\ \ \\ \mathbf{ = ({x}^{2} - x + 1)}


I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions