Math, asked by StarTbia, 1 year ago

Simplify the following into their lowest forms.

Attachments:

Answers

Answered by Robin0071
1
Solution:-

given by:-
 \frac{ {x}^{3}  + ( {2}^{3} )}{ {x}^{4}  + 4 {x}^{2} + 16 }  \\  \frac{(x + 2)( {x}^{2} + 4 - 2x) }{ {x}^{4}  + 8 {x}^{2} +  {4}^{2}  - 4 {x}^{2}  }  \\  \frac{(x + 2)( {x}^{2} + 4 - 2x) }{ {( {x}^{2} +  {2}^{2})  }^{2}  -  {(2x)}^{2} }  \\  \frac{(x + 2)( {x}^{2} + 4 - 2x) }{( {x}^{2} + 4 - 2x)( {x}^{2}  + 4 + 2x) }  \\  \frac{(x + 2)}{ ({x}^{2} + 2x + 4) } ans
☆i hope its help☆
Answered by rohitkumargupta
0
HELLO DEAR,
 \mathbf{\frac{ {x}^{3} + ( {2}^{3} )}{ {x}^{4} + 4 {x}^{2} + 16 } } \\ \\  \mathbf{\frac{(x + 2)( {x}^{2} + 4 - 2x) }{ {x}^{4} + 8 {x}^{2} + {4}^{2} - 4 {x}^{2} }} \\  \\ \mathbf{ \frac{(x + 2)( {x}^{2} + 4 - 2x) }{ {( {x}^{2} + {2}^{2}) }^{2} - {(2x)}^{2} }} \\  \\ \mathbf{ \frac{(x + 2)( {x}^{2} + 4 - 2x) }{( {x}^{2} + 4 - 2x)( {x}^{2} + 4 + 2x) }} \\  \\ \mathbf{ \frac{(x + 2)}{ ({x}^{2} + 2x + 4) } }


I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions