Math, asked by chandavedic, 2 days ago

Simplify the following

 log_{x \:  \to \: 0}(tan( \frac{\pi}{4} + x) )^{ \frac{1}{x} }

Answers

Answered by mathdude500
6

Appropriate Question :- Simplify the following:

\rm \: \displaystyle\lim_{x \to 0}\rm  {\bigg[tan\bigg(\dfrac{\pi}{4} + x\bigg) \bigg]}^{ \dfrac{1}{x} }  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \displaystyle\lim_{x \to 0}\rm  {\bigg[tan\bigg(\dfrac{\pi}{4} + x\bigg) \bigg]}^{ \dfrac{1}{x} }  \\

If we substitute directly x = 0, we get

\rm \:  =   {\bigg[tan\bigg(\dfrac{\pi}{4} + 0\bigg) \bigg]}^{ \dfrac{1}{0} }  \\

\rm \:  =  {1}^{ \infty }  \\

which is indeterminant form.

So, Consider again

\rm \: \displaystyle\lim_{x \to 0}\rm  {\bigg[tan\bigg(\dfrac{\pi}{4} + x\bigg) \bigg]}^{ \dfrac{1}{x} }  \\

We know,

\boxed{ \rm{ \:tan(x + y) =  \frac{tanx + tany}{1 - tanx \: tany}  \: }} \\

So, using this result, we get

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[\dfrac{tan \dfrac{\pi}{4} + tanx }{1 - tan \dfrac{\pi}{4} \: tanx} \bigg]}^{\dfrac{1}{x} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[\dfrac{1 + tanx }{1 - 1 \times  \: tanx} \bigg]}^{\dfrac{1}{x} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[\dfrac{1 + tanx }{1 -  tanx} \bigg]}^{\dfrac{1}{x} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[\dfrac{1 - tanx + tanx + tanx }{1 -  tanx} \bigg]}^{\dfrac{1}{x} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[\dfrac{1 - tanx  + 2tanx }{1 -  tanx} \bigg]}^{\dfrac{1}{x} }  \\

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[1 + \dfrac{ 2tanx }{1 -  tanx} \bigg]}^{\dfrac{1}{x} }  \\

can be rewritten as

\rm \:  = \displaystyle\lim_{x \to 0}\rm  {\bigg[1 + \dfrac{ 2tanx }{1 -  tanx} \bigg]}^{\dfrac{1 - tanx}{2tanx}  \times \dfrac{2tanx}{1 - tanx}  \times \dfrac{1}{x} }  \\

We know,

\boxed{ \rm{ \:\displaystyle\lim_{x \to 0}\rm  {\bigg(1 + x \bigg) }^{\dfrac{1}{x} }  = e \: }} \\

So, using this result, we get

\rm \:  =  \:  {e}^{\displaystyle\lim_{x \to 0}\rm  \frac{2tanx}{(1 - tanx)x} }

\rm \:  =  \:  {e}^{\displaystyle\lim_{x \to 0}\rm  \frac{2}{(1 - tanx)}  \times\displaystyle\lim_{x \to 0}\rm  \dfrac{tanx}{x} }

\rm \:  =  \:  {e}^{2 \times 1}  \\

\rm \:  =  \:  {e}^{2}  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \displaystyle\lim_{x \to 0}\rm  {\bigg[tan\bigg(\dfrac{\pi}{4} + x\bigg) \bigg]}^{ \dfrac{1}{x} }  =  {e}^{2} \: }}  \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{sinx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{tanx}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{log(1 + x)}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {e}^{x}  - 1}{x}  = 1}\\ \\ \bigstar \: \bf{\displaystyle \rm\lim_{x \to0} \frac{ {a}^{x}  - 1}{x} = loga}\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions