Math, asked by polomi777, 7 months ago

Simplify the following without multiplying :
(a) 109 x 50
(b) 65 x 102
(c) 102 x 21
(d) 191 + 200 + 109
(e) 20 x 155​

Answers

Answered by Nitinhelper
1

Answer:

i)103×107

\boxed{\underline {Method 1}}

Method1

(100 + 3) (100 + 7)

Now, by using identity

(x + a) (x + b) = x² + (a+b)*x + ab

So,

x = 100 , a = 3 , b = 7

= (100)² + (3+7)*100 + (3*7)

= 10000 + 1000 + 21

= 11021

.

\boxed{\underline {Method 2}}

Method2

(110 - 7) (110 - 3)

by using identity

(x + a) (x + b) = x² + (a+b)*x + ab

So,

x = 100 , a = (-7) , b = (-3)

= (110)² + { (-7) + (-3) }*110 + {(-7)*(-3)}

= 12100 + (-10)*110 + 21

= 21200 - 1100 + 21

= 11021

.

➖➖➖➖➖➖➖➖➖➖

.

\bf{(ii) 95 \times 96}(ii)95×96

\boxed{\underline {Method 1}}

Method1

(90 + 5) (90 + 6)

by using identity

(x + a) (x + b) = x² + (a+b)*x + ab

So,

x = 90 , a = 5 , b = 6

= (90)² + (5+6)*90 + (5*6)

= 8100 + 990 + 30

= 9120

.

\boxed{\underline {Method 2}}

Method2

(100 - 5) (100 - 4)

by using identity

(x + a) (x + b) = x² + (a+b)*x + ab

So,

x = 100 , a = (-5) , b = (-4)

= (100)² + { (-5) + (-4) }*100 + 20

= 10000 + (-9)*100 + 20

= 10000 - 9000 + 20

= 10020 - 900

= 9120

.

➖➖➖➖➖➖➖➖➖➖

.

\bf{(iii) 104 \times 96}(iii)104×96

\boxed{\underline {Method 1}}

Method1

(100 + 4) (100 - 4)

by using identity

(x + a) (x + b) = x² + (a+b)*x + ab

So,

x = 100 , a = 4 , b = (-4)

= (100)² + { 4 + (-4) }*100 + 4*(-4)

= 10000 + (4 - 4)*100 - 16

= 10000 + 0*100 - 16

= 10000 - 16

= 9984

.

\boxed{\underline {Method 2}}

Method2

(90 + 14) (90 + 6)

by using identity

(x + a) (x + b) = x² + (a+b)*x + ab

So,

x = 90 , a = 14 , b = 6

= (90)² + (14 + 6)*90 + (14*6)

= 8100 + 20*90 + 84

= 8100 + 1800 + 84

=9984

Answered by ss84131763
7

Answer:

hope it helps you thanks

Attachments:
Similar questions