Math, asked by iamlegend062002, 9 months ago

simplify this integration​

Attachments:

Answers

Answered by parvd
4

Answer:

-1/2.cotx+c

Step-by-step explanation:

Easy steps:-

1) Cos2x=sin²x-sin2x

2) sin²x+cos²x=1

Substituting (2) in eqn (1).

and putting it in (1-cos2x) While solving,

cancelling the square terms and substituting.

Let it be turning to cotx

taking out 1/2 common bur due to transmision of any kind its negative

So final comes is -1/2cotx+c

Refer attachment !!

Attachments:
Answered by Anonymous
126

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\sf{\int \dfrac{1}{1-cos2x}dx}}

♣ ᴀɴꜱᴡᴇʀ :

\boxed{\sf{\int \dfrac{1}{1-\cos \left(2x\right)}dx=-\dfrac{1}{2\tan \left(x\right)}+C}}

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\text { Apply u - substitution: } u=2 x

=\int \dfrac{1}{2\left(1-\cos \left(u\right)\right)}du

\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx

=\dfrac{1}{2}\cdot \int \dfrac{1}{1-\cos \left(u\right)}du

\text { Apply } u-\text { substitution: } v=\tan \left(\dfrac{u}{2}\right)

=\dfrac{1}{2}\cdot \int \dfrac{1}{v^2}dv

\mathrm{Apply\:exponent\:rule}:\quad \dfrac{1}{a^b}=a^{-b}

\dfrac{1}{v^2}=v^{-2}

=\dfrac{1}{2}\cdot \int \:v^{-2}dv

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\dfrac{x^{a+1}}{a+1},\:\quad \:a\ne -1

=\dfrac{1}{2}\cdot \dfrac{v^{-2+1}}{-2+1}

\text { Substitute back }

=\dfrac{1}{2}\cdot \dfrac{\tan ^{-2+1}\left(\dfrac{2x}{2}\right)}{-2+1}

\text { Simplify } \dfrac{1}{2} \cdot \dfrac{\tan ^{-2+1}\left(\dfrac{2 x}{2}\right)}{-2+1}:-\dfrac{1}{2 \tan (x)}

=-\dfrac{1}{2\tan \left(x\right)}

\bf{Add\:a\:constant\:to\:the\:solution}

\large\boxed{\sf{=-\dfrac{1}{2\tan \left(x\right)}+C}}

Similar questions