Math, asked by singhshreya1218, 7 months ago


Simplify this Question...
And tell me the answer with proper solution..​

Attachments:

Answers

Answered by Blossomfairy
14

Question :

Simplify :

 \bf{ \dfrac{ {3}^{5} \times  {10}^{5}   \times 25}{ {5}^{7}  \times  {6}^{5} } }

Answer :

 \bf \implies{ \dfrac{ {3}^{5} \times  {10}^{5}   \times 25}{ {5}^{7}  \times  {6}^{5} } } \\  \\  \quad  \bf\implies{ \dfrac{ {3}^{5}  \times  {2}^{5}  \times  {5}^{5}  \times {5}^{2}  }{ {5}^{7} \times  {3}^{5}   \times  {6}^{5} } } \\  \\   \quad \bf\implies{  {3}^{5 - 5}  \times  {2}^{5 - 5}  \times  {5}^{5 + 2  - 7}  } \\  \\   \quad \bf\implies{ {3}^{0} \times  {2}^{0} \times  {5}^{7 - 7}   } \\  \\  \quad \bf \implies{1 \times 1 \times  {5}^{0} } \\  \\  \quad \bf \implies{1 \times 1 \times 1} \\  \\  \quad \implies { \underline {\boxed {\bf \red{1}}}}

So,the answer is 1..

Answered by Anonymous
8

Answer:

ANSWER :

1

Step-by-step explanation:

QUESTION :

  \dfrac{ {3}^{5} \:  \times  \:  {10}^{5}    \: \times  25 }{ {5}^{7}  \: \times  \:  {6}^{5}  }

 \\

CONCEPT USED :

  {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}  \\  \\  {a}^{m}  \div  {a}^{n}  =  {a}^{m  -  n}  \\  \\ (a \times b) ^{m}  =  {ab}^{m}  =  {a}^{m}  \times  {b}^{m}  \\  \\  {a}^{0}  = 1

 \\

SOLUTION :

 \dfrac{ {3}^{5} \:  \times  \:  {10}^{5}    \: \times  25 }{   {5}^{7} \:   \times {6}^{5}   } \\  \\  =  \dfrac{ {3}^{5} \:  \times  \: (2 \times 5) ^{5}  \times  {5}^{2} }{ {5}^{7}  \:  \times (3 \times 2)^{5} }  \\  \\  =  \dfrac{ {3}^{5} \:  \times  {2}^{5}  \times  {5}^{5}   \times  {5}^{2} }{ {5}^{7} \times  {3}^{5}  \times  {2}^{5}  }  \\  \\  =  \dfrac{{3}^{5} \:  \times  {2}^{5}  \times   {5}^{5 + 2} }{{5}^{7} \times  {3}^{5}  \times  {2}^{5}} \\  \\  =  \frac{{3}^{5} \:  \times  {2}^{5}  \times   {5}^{7} }{{5}^{7} \times  {3}^{5}  \times  {2}^{5}} \\  \\  =  {3}^{5 - 5}  \times  {2}^{5 - 5}  \times  {5}^{7 - 7}  \\  \\  =  {3}^{0}  \times  {2}^{0}  \times  {5}^{0}  \\  \\  = 1 \times 1 \times 1 \\  \\  = 1

 \\

ANSWER :

1

 \\

HOPE IT HELPS YOU !

THANKS !

Similar questions