Math, asked by dia27casandra, 9 months ago

simplify this question please this is urgent ​

Attachments:

Answers

Answered by Cynefin
29

━━━━━━━━━━━━━━━━━━━━

 \huge{ \sf{ \underline{ \underline{ \purple{Answer...}}}}}

♦️To Simplify:

  • \large{ \sf{[( \frac{3}{4}) {}^{ - 2}   \div ( \frac{4}{5}) } {}^{ - 3}   ] \times ( \frac{3}{5}) {}^{ - 2} }

━━━━━━━━━━━━━━━━━━━━

 \huge{ \sf{ \underline{ \underline{ \purple{Concept  \: used...}}}}}

The above question is asking to simplify a exponential sum which can be done by using the different laws of exponents. The important laws of exponents are:-

 \large{ \sf{ \odot \:  \: { {a}^{m} \times  {a}^{n} =  {a}^{m + n} }}}   \\  \\ \large{ \sf{ \odot \:  \: { \frac{ {a}^{m} }{ {a}^{n} } =  {a}^{m - n}  }}} \\  \\ \large{ \sf{ \odot \:  \: {( \frac {a} {b}) {}^{m} =  \frac{ {a}^{m} }{ {b}^{m} }  }}} \\  \\  \large{ \sf{ \odot \:  \: { {a}^{ - m} =  \frac{1}{ {a}^{m} }}}} \\  \\  \large{ \sf{ \odot \:  \: {( \frac{a}{b}) {}^{ - m}   = ( \frac{b}{a}) {}^{m}  }}}

﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏

More formulas:

\large{ \sf{ \odot \:  \: {(ab) {}^{m} =  {a}^{m} {b}^{m}  }}} \\  \\ \large{ \sf{ \odot \:  \: {( {a}^{m}) {}^{n} = (a) {}^{mn}  }}} \\  \\ \large{ \sf{ \odot \:  \: { {a}^{0} = 1}}} \\  \\ \large{ \sf{ \odot \:  \: { {a}^{1} = a}}}

By using these laws, we can solve the given question.

━━━━━━━━━━━━━━━━━━━━

 \huge{ \sf{ \underline{ \underline{ \purple{Solution...}}}}}

By using the laws of exponents listed above,

 \large{ \sf{ \rightarrow{[( \frac{3}{4}) {}^{ - 2}   \div ( \frac{4}{5}) } {}^{ - 3}   ] \times ( \frac{3}{5}) {}^{  -  2} }} \\  \\  \large{ \sf{ \rightarrow[( \frac{4}{3}) {}^{  2}   \div ( \frac{5}{4}) } {}^{ 3}   ] \times ( \frac{5}{3}) {}^{  2} } \\   \\   \sf{ \dag \: { \red{ by \: using \: (a {}^{ - m}  =  \frac{1}{ {a}^{m} }) }}} \\  \\  \large{ \sf{ \rightarrow[ \frac{4 {}^{2} }{3 {}^{2} } {}  \div  \frac{5 {}^{3}  }{4 {}^{3} }  }    ] \times  \frac{5  {}^{2}  }{3 {}^{2} } } \\  \\  \sf{ \dag \: { \red{by \: using \: ( \frac{a}{b}) {}^{m}   =  \frac{a {}^{m} }{ {b}^{m} }}}} \\  \\ \large{ \sf{ \rightarrow[ \frac{4 {}^{2} }{3 {}^{2} } {}   \times   \frac{4 {}^{3}  }{5 {}^{3} }  }    ] \times  \frac{5  {}^{2}  }{3 {}^{2} }} \\  \\ \large{ \sf{ \rightarrow \frac{4 {}^{2} }{3 {}^{2} } {}   \times   \frac{4{}^{3}  }{5{}^{3} }  }     \times  \frac{5  {}^{2}  }{3 {}^{2} } } \\  \\  \large{ \sf{ \rightarrow \:  \frac{ {4 {}^{2} \times  {4}^{3} \times  {5}^{2}   } }{ {3}^{2} \times  {3}^{2} \times   {5}^{3} }}}

By simplifying further,

\large{ \sf{ \rightarrow \:  {4}^{2}  \times  {4}^{3}  \times  {5}^{2}  \times  {5}^{ - 3} \times  {3}^{ - 2}  \times  {3}^{ - 2} }} \\  \\  \large{ \sf{ \rightarrow \:  {4}^{2 + 3}   \times  {5}^{2 + ( - 3)}  \times  {3}^{( - 2) + ( - 2)}  }} \\  \\  \sf{ \dag{ \red{by \: using \:  {a}^{m} \times  {a}^{n} =  {a}^{m + n} }}} \\  \\  \large{ \sf{ \rightarrow \:  {4}^{5}   \times   {5}^{ - 1}     \times  3 {}^{ - 4}}} \\  \\  \large{ \sf{ \rightarrow \:  \frac{ {4}^{5} }{5 \times  {3}^{4} }}} \\  \\  \large{ \sf{ \rightarrow  \boxed{ \sf{ \green{\:  \frac{1024}{405}}} (ans)}}}

Hence, simplified!!

━━━━━━━━━━━━━━━━━━━━

Similar questions