Math, asked by bipulskp597r7, 10 months ago

simplify using formula
(4 {a}^{2} - 9)( 4{a}^{2} - 6a + 9)(4a ^{2}  + 6a + 9)

Answers

Answered by pcpatel680
0

Answer:

(2a-3)(2a+3)(4a^2-6a+9)(4a^2+6a+9)

Step-by-step explanation:

factorize 4a^2-9

we get

(2a-3)(2a+3)

so final answer is,

(2a-3)(2a+3)(4a^2-6a+9)(4a^2+6a+9)

(we cant factorize other 2 terms)

HOPES IT HELPS U

PLEASE MARK ME AS A BRAINLIEST

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the below mentioned Identity :

1.

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

2.

 {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2} )

3.

 {a}^{3}   -   {b}^{3}  = (a  -  b)( {a}^{2}   +  ab +  {b}^{2} )

TO EVALUATE

(4 {a}^{2}  - 9)(4 {a}^{2}   + 6a +  9)(4 {a}^{2}    -  6a +  9)

EVALUATION

(4 {a}^{2}  - 9)(4 {a}^{2}   + 6a +  9)(4 {a}^{2}    -  6a +  9)

 =  \{ {(2a)}^{2}  -  {(3)}^{2}  \}(4 {a}^{2}   + 6a +  9)(4 {a}^{2}    -  6a +  9)

 =  (2a + 3)(2a - 3)(4 {a}^{2}   + 6a +  9)(4 {a}^{2}    -  6a +  9)

 =  (2a + 3) \{{(2a)}^{2}    -  2a \times 3 +   {(3)}^{2}  \}  (2a  -  3) \{{(2a)}^{2}   + 2a \times 3 +   {(3)}^{2}  \}

 =   \{{(2a)}^{3}  +  {(3)}^{3}  \} \times \:     \{{(2a)}^{3}   -   {(3)}^{3}  \}

 =   (8 {a}^{3}  + 27)  \times (8 {a}^{3}   -  27)

 =  {(8 {a}^{3}) }^{2}  -  {(27)}^{2}

 = 64 {a}^{6}  - 729

Similar questions