Math, asked by angelzz55, 3 months ago

Simplify using laws of exponents:
2/3³×4/9​

Answers

Answered by amrutasns98
1

Answer:

Answer:8/243

Answer:8/243Step-by-step explanation:

2/27 × 4/9

8/243 = 0.0329

Answered by MrImpeccable
23

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Simplify:

  •  \left(\dfrac{2}{3}\right)^3 * \left(\dfrac{4}{9}\right) \\

Solution:

 :\implies \left(\dfrac{2}{3}\right)^3 * \left(\dfrac{4}{9}\right) \\\\:\implies \left(\dfrac{2}{3}\right)^3 * \left(\dfrac{2^2}{3^2}\right) \\\\:\implies \left(\dfrac{2}{3}\right)^3 * \left(\dfrac{2}{3}\right)^2 \\\\:\implies \left(\dfrac{2}{3}\right)^{3+2} \\\\\bf{:\implies \left(\dfrac{2}{3}\right)^5 = \left(\dfrac{32}{243}\right)}

Formula Used:

  •  a^m * a^n = a^{m+n}

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions