Math, asked by sahasrachandrika2121, 4 months ago

simplify using laws of exponents : a) 64^-1/3 x [64^1/3 - 64^2/3]​

Answers

Answered by ItzMeMukku
17

\red{\bf {Answer:}}

64^{-\frac{1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}}

\green{\bf {Given}}

64^{-\frac{1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3}}

\blue{\bf {Solution}}

=(4^3)^{-\frac{1}{3}}((4^3)^{\frac{1}{3}}-(4^3)^{\frac{2}{3}}

\purple{\bf {Applying \:exponent\:identity}}

(a^b)^x=a^{b\times x}

=(4)^{-\frac{3}{3}}((4)^{\frac{3}{3}}-(4)^{\frac{2\times 3}{3}}

=(4)^{-1}((4)^{1}-(4)^{2}

=(4)^{-1}(4-16)

=\frac{1}{4}\times(-12)

\red{\bf {Therefore}}

64^{-\frac{1}{3}}(64^{\frac{1}{3}}-64^{\frac{2}{3)}}

More info :-

\begin{gathered}\boxed{\begin{array}{| c |}\qquad\tt\large\textsf{ ! Formulas ! }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ ( a + b )² = a² + 2ab + b² }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ ( a - b )² = a² - 2ab + b² }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ a² - b² = ( a + b ) ( a - b ) }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ ( a + b )³ = a³ + 3a²b + 3ab² }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ ( a - b )³ = a³ - 3a²b + 3ab² - b³ }\\\\\\\qquad\tt{:}\longrightarrow\large\textsf{ a³ - b³ = ( a - b ) ( a² + ab + b² ) }\end{array}}\end{gathered}

Thankyou :)

You can also refer to the attachment for better understanding :)

Attachments:
Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Given-} \\

 \sf{ {64}^{ -  \frac{1}{3} }  \bigg [ {64}^{ \frac{1}{3} } -  {64}^{ \frac{2}{3} } \bigg  ] } \\

 \bf \underline{To \: find-} \\

\textsf{Simplify the given fractional expression and find their value.}\\

 \bf \underline{Solution-} \\

\textsf{Given fractional expression,}\\

 \sf{ {64}^{ -  \frac{1}{3} }  \bigg [ {64}^{ \frac{1}{3} } -  {64}^{ \frac{2}{3} } \bigg  ] } \\

 \sf{ \Rightarrow \:( {4}^{3}  {)}^{ -  \frac{1}{3} }  \bigg[( {4}^{3}  {)}^{ \frac{1}{3} } - ( {4}^{3}  {)}^{ \frac{2}{3} }   \bigg]  } \\

 \sf{ \Rightarrow \:  {4}^{ \cancel3 \times  \big(  - \frac{1}{ \cancel3} \big) }  \bigg( {4}^{ \cancel3 \times  \frac{1}{ \cancel3} }  -  {4}^{ \cancel3 \times  \frac{2}{ \cancel3} } \bigg) } \\

 \sf{ \Rightarrow \: {4}^{ - 1}  (4 -  {4}^{2}) } \\

 \sf{ \Rightarrow \: \frac{1}{4}  (4 -  {4}^{2} )} \\

 \sf{ \Rightarrow \: \frac{1}{4} (4 - 16) } \\

 \sf{ \Rightarrow \:  \frac{1}{ \cancel4}  \times ( -  \cancel{ {12}}^{3} )} \\

  \sf{ \Rightarrow \:  - 3} \\

 \bf \underline{Answer-} \\

 \bf{ \underline{Hence \:  after  \: simplifying  \: we \:  get  \: the  \: value  \: of : }}

  \sf \underline{\boxed{ \sf{ {64}^{ -  \frac{1}{3} }  \bigg [ {64}^{ \frac{1}{3} } -  {64}^{ \frac{2}{3} } \bigg  ] }  \: is \: -3 } }\\

Similar questions
Math, 4 months ago