Math, asked by Anonymous, 1 month ago


 \\  \odot \:  \: \:  \:   \:  \:  \:  \large \bf \underline{ \underline{Solve \:  \:  it} \:  } _{ \bigstar \star}\\  \\
 \dashrightarrow \:  \:  \sf \int \frac{(x  -  1)}{(x + 1) \sqrt{ {x}^{3}  +  {x}^{2}  + x} } dx \\

Answers

Answered by Rikita30
2

SOLUTION :

 \:  \:  \:  \:  \:  \:  \int \frac{(x - 1)}{(x + 1) \sqrt{ {x}^{3} +  {x}^{2}  + x } } dx  \\  \\

 \longrightarrow \int \frac{({  {x}^{2}  - 1)}^{} }{ {(x + 1)}^{2} \sqrt{ {x}^{3}  +  {x}^{2}  + x}  } dx \\  \\  \\

 \longrightarrow \int \frac{(1 -  \frac{1}{ {x}^{2} }) }{ \frac{ {x}^{2}  + 2x + 1}{x}  \sqrt{x + 1 +  \frac{1}{x} } }  dx\\  \\

 \longrightarrow \int\frac{(1 -  \frac{1}{ {x}^{2} }) }{ {  \bigg({x}^{}  + 2 +  \frac{1}{x}  \bigg)}{}  \sqrt{x + 1 +  \frac{1}{x} } }  dx\\  \\

Let,  \\ x + 2 + 1/x = z \\  \\  \longrightarrow \bigg(1 +  \frac{1}{ {x}^{2} }  \bigg) dx = 2z \: dz

Now,

 \longrightarrow \int\frac{(1 -  \frac{1}{ {x}^{2} }) }{ {  \bigg({x}^{}  + 2 +  \frac{1}{x}  \bigg)}{}  \sqrt{x + 1 +  \frac{1}{x} } }  dx =  \int \frac{2z }{( {z}^{2}  + 1)z} dz\\  \\  \\  \longrightarrow \: 2 \int \frac{dz}{ {z}^{2} + 1 }  \\  \\  \\  \longrightarrow \: 2 { \tan}^{ - 1} (z) + c \\  \\  \\  \longrightarrow \bf \: 2 { \tan}^{ - 1}  \bigg(x + 2 +  \frac{1}{x}  \bigg) + c

Similar questions