Math, asked by sanjithkumar8085, 9 months ago

Simplify √x÷√2+√2 by rationalizing the denominator

Answers

Answered by Mehekjain
1

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{AnSwEr...}}}}}}}}}

Here is your answer :

 \sqrt{x} \div  \sqrt{2}  +  \sqrt{2 }  \\  \sqrt{x}  \div  \sqrt{2}  +  \sqrt{2}  \times  \sqrt{2} -  \sqrt{2}   \div  \sqrt{2}  -  \sqrt{2}  \\  \sqrt{x} ( \sqrt{2}  -  \sqrt{2} ) \div ( \sqrt{2}  +  \sqrt{2} )( \sqrt{2}  -  \sqrt{2} ) \\ now \: the \: denominator \: becomes \: an \: identity \: which \: is \: (a + b) \: (a - b) = (a ^{2}  - b ^{2} ) \\ so \:  (\sqrt{2}  ^{2} ) - ( \sqrt{2}  ^{2} ) = 2 - 2 = 0 \\ so \: \sqrt{x} ( \sqrt{2}  -  \sqrt{2} ) \div 0

{Here\:the\:denominator \:is\:0\:which  \:is\:a\:rational\:number}

{\huge{\underline{\underline{\mathbb{\bold{\mathcal{Don't\:forget\:to\:follow\:meh\:dear...}}}}}}}

{\huge{\underline{\underline{\mathbb{\bold{\mathcal{Be\:Brainly......}}}}}}}

{\huge{\pink{\underline{\underline{\purple{\mathbb{\bold{\mathcal{MarK\:It\:As\:Brainliest...}}}}}}}}}

Follow back..............❣

Similar questions