Simplify (x^3-y^3) ^3+(y^3-z^3) ^3+(z^3+x^3) ^3÷ (x-y) ^3+(y-z) ^3+(z-x) ^3
Answers
Answered by
3
Step-by-step explanation:
a3 + b3 + c3- 3abc = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
if a + b + c = 0; then a3 + b3 + c3- 3abc = 0
or a3 + b3 + c3= 3abc
For the numerator:
(x3 - y3) + (y3 - z3) + (z3 - x3) = 0
so, (x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3
= 3 (x3 - y3) (y3 - z3) (z3 - x3)
again, x3 - y3= (x - y) (x2 + xy + y2)
so, 3 (x3 - y3) (y3 - z3) (z3 - x3)
= 3 (x - y) (x2 + xy + y2) (y - z) (y2 + yz + z2)(z - x) (z2 + zx + x2)
for the denominator:
(x - y) + (y-z) + (z-x) = 0
so, (x - y)3 + (y - z)3) (z - x)3 = 3 (x - y) (y-z) (z-x)
so, (x3 - y3)3 + (y3 - z3)3 + (z3 - x3)3 / (x - y)3 + (y - z)3) (z - x)3
= 3 (x - y) (x2 + xy + y2) (y - z) (y2 + yz + z2)(z - x) (z2 + zx + x2) / 3 (x - y) (y-z) (z-x)
= (x2 + xy + y2) (y2 + yz + z2) (z2 + zx + x2)
Similar questions