simplify: x=5+2√6. find√x+1/√x
sukanyagiri99p7vkz2:
6.28
Answers
Answered by
0
x=9.89then √x=3.144final answer is √x+1√x=6.28
Answered by
1
It's quite clear your question is x-(1/√x)
⑴ if y= (a)+(b)+2√{(a)×(b)}=(√a+√b)²
√y=±{√a+√b}
⑵ if x=5+2√6=(3)+(2)+2√{(3)(2)}
→√x=√3 +√2
⑶ 1/√x=1/(√3+√2)=(√3-√2)/(√3+√2)(√3-√2)=(√3-√2)/(√3)²-(√2)²=(√3-√2)/(3–2)=(√3-√2)/(1)=√3-√2
⑷ ∴
x-{1/√x}
=5+2√6-(√3-√2)
=√5+2√6-√3+√2 ↙
⑸ I will do the other “possible” version of your question ,just in case someone wants to arque:
(x-1) /(√x)
=(5+2√6–1)/(√3+√2)
=(4+2√6)/(√3+√2)
=2(2+√6) /(√3+√2)
=2(2+√6)(√3-√2)/(√3+√2)(√3-√2)
=2{2√3–2√2-√2√2√3+√2√3√3}/(√3)²-(√2)²
=2(2√3–2√2–2√3+3√2)/(3–2)
=2(√2)/1
=2√2 ↙
⑴ if y= (a)+(b)+2√{(a)×(b)}=(√a+√b)²
√y=±{√a+√b}
⑵ if x=5+2√6=(3)+(2)+2√{(3)(2)}
→√x=√3 +√2
⑶ 1/√x=1/(√3+√2)=(√3-√2)/(√3+√2)(√3-√2)=(√3-√2)/(√3)²-(√2)²=(√3-√2)/(3–2)=(√3-√2)/(1)=√3-√2
⑷ ∴
x-{1/√x}
=5+2√6-(√3-√2)
=√5+2√6-√3+√2 ↙
⑸ I will do the other “possible” version of your question ,just in case someone wants to arque:
(x-1) /(√x)
=(5+2√6–1)/(√3+√2)
=(4+2√6)/(√3+√2)
=2(2+√6) /(√3+√2)
=2(2+√6)(√3-√2)/(√3+√2)(√3-√2)
=2{2√3–2√2-√2√2√3+√2√3√3}/(√3)²-(√2)²
=2(2√3–2√2–2√3+3√2)/(3–2)
=2(√2)/1
=2√2 ↙
Similar questions