simply (3-√2)(2-√3)(3-√2)(2+√3)
Answers
Step-by-step explanation:
(3-√2)(2-√3)(3+√2)(2+√3)
(3+√2)(3-√2)(2-√3)(2+√3)
(9-2)(4-3)
7.1
7
mark as brilliant
Answer:
The required simplified form of the given expression is 11 - 6 √2.
Step-by-step-explanation:
We have given that,
( 3 - √2 ) ( 2 - √3 ) ( 3 - √2 ) ( 2 + √3 ).
We have to simplify this expression.
Now,
( 3 - √2 ) ( 2 - √3 ) ( 3 - √2 ) ( 2 + √3 )
⇒ ( 3 - √2 ) ( 3 - √2 ) ( 2 - √3 ) ( 2 + √3 )
⇒ ( 3 - √2 )² ( 2 - √3 ) ( 2 + √3 )
⇒ [ ( 3 )² - 2 * 3 * √2 + ( √2 )² ] ( 2 - √3 ) ( 2 + √3 ) - - - [ ( a - b )² = a² - 2ab + b² ]
⇒ ( 9 - 6 √2 + 2 ) [ ( 2 )² - ( √3 )² ] - - - [ ( a - b ) ( a + b ) = a² - b² ]
⇒ ( 9 + 2 - 6 √2 ) ( 4 - 3 )
⇒ ( 11 - 6 √2 ) * 1
⇒ 11 - 6 √2
∴ The required simplified form of the given expression is 11 - 6 √2.