Math, asked by happinessforinp5m4xx, 11 months ago

Simply \frac{\sqrt[3]{162x^{2} } }{\sqrt[3]{2x} }

Answers

Answered by Anonymous
4

Answer:

\large\boxed{\sf{3 \sqrt[3]{3x} }}

Step-by-step explanation:

\dfrac{\sqrt[3]{162x^{2} } }{\sqrt[3]{2x} } \\  \\  =   \sqrt[3]{ \dfrac{162 {x}^{ \cancel{2}} }{2 \cancel{x}} }  \\  \\  =  \sqrt[3]{ \frac{162x}{2} }  \\  \\  =  \sqrt[3]{81x}  \\  \\  =  \sqrt[3]{81}  \times  \sqrt[3]{x}  \\  \\  =  \sqrt[3]{ {3}^{4} }  \times  \sqrt[3]{x }  \\  \\  =  { ({3}^{4} )}^{ \frac{1}{3} }  \times  {x}^{ \frac{1}{3} }  \\  \\  =  {(3)}^{ \frac{4}{3} }  {(x)}^{ \frac{1}{3} }  \\  \\  =  {(3)}^{(1 +  \frac{1}{3}) }  \times  {(x)}^{ \frac{1}{3} }  \\  \\  =  {3}^{1} \times  {3}^{ \frac{1}{3} }   \times  {x}^{ \frac{1}{3} }  \\  \\  = 3 \times  {(3x)}^{ \frac{1}{3} }  \\  \\  = 3 \sqrt[3]{3x}

Concept Map :-

  •  \sqrt[n]{x}  =  {x}^{ \frac{1}{n} }

  •  \sqrt{xy}  =  \sqrt{x}  \times   \sqrt{y}

  •  {x}^{(m + n)}  =  {x}^{m}  \times  {x}^{n}

  •  {(xy)}^{m}  =  {x}^{m}  \times  {y}^{m}
Similar questions