Math, asked by thefatunirat, 2 months ago

simplyfy 4√18/√12-8√75/√32+9√2/√3​

Answers

Answered by Krishrkpmlakv
3

Answer:

Step-by-step explanation:

Attachments:
Answered by brainlysme15
0

The equation simplifies to 0

Given,

 \frac{ 4\sqrt18}{\sqrt12} -\frac{8\sqrt75}{\sqrt32}+\frac{9\sqrt2}{\sqrt3}

 \frac{12\sqrt2}{2\sqrt3} - \frac{40\sqrt3}{4\sqrt2}+\frac{9\sqrt2}{\sqrt3}

  \frac{6\sqrt2}{\sqrt3} - \frac{10\sqrt3}{\sqrt2}+\frac{9\sqrt2}{\sqrt3}           -(a)

Consider the term \frac{6\sqrt2}{\sqrt3}

By rationalizing the denominator we get,

\frac{6\sqrt2}{\sqrt3}  ×  \frac{\sqrt3}{\sqrt3}  =  \frac{6\sqrt2\sqrt3}{3} = 2\sqrt6           -(1)

Similarly consider the term \frac{10\sqrt3}{\sqrt2}

By rationalizing the denominator we get,

\frac{10\sqrt3}{\sqrt2}  ×  \frac{\sqrt2}{\sqrt2}  =  \frac{10\sqrt3\sqrt2}{2} = 5\sqrt6        -(2)

Similarly consider the term \frac{9\sqrt2}{\sqrt3}

By rationalizing the denominator we get,

\frac{9\sqrt2}{\sqrt3}  ×  \frac{\sqrt3}{\sqrt3}  =  \frac{9\sqrt2\sqrt3}{3} = 3\sqrt6           -(3)

Substituting equations (1) , (2) and (3) in equation (a), we get,

⇒  2\sqrt6-5\sqrt6+3\sqrt6

⇒  \sqrt6 ( 2-5+3)

⇒  \sqrt6(0)

⇒  0

Solution = 0

https://brainly.in/question/52554466

https://brainly.in/question/19211255

#SPJ2

Similar questions