Math, asked by vanshika931, 10 months ago

simplyfy by rationalising the denominator 1/5+2√6​

Answers

Answered by ToxicEgo
8

Answer:

1/5+2√6

→ 1/(5+2√6) ×(5-2√6) /(5-2√6)

→ (5-2√6) /5(5-2√6) +2√6(5-2√6)

→ 5-2√6/25-10√6+10√6-4√6

→ 5-2√6/25-4√6

Answered by Salmonpanna2022
6

Step-by-step explanation:

 \bf \underline{Solution-} \\

Given

 \bf \frac{1}{5 + 2 \sqrt{6} }  \\

Rationalising factor of a + b√c = a - b√c.

So, the rationalising factor of 5+26 = 5-26.

On rationalising the denominator them.

 \rm  \longrightarrow \:  \frac{1}{5 + 2 \sqrt{6} }  \times  \frac{5 - 2 \sqrt{6} }{5 - 2 \sqrt{6} }  \\

 \rm  \longrightarrow \:  \frac{1( 5 - 2 \sqrt{6} )}{(5 + 2 \sqrt{6})(5 - 2 \sqrt{6} ) }  \\

Remaimber: Anything multiply by 1 gives itself.

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{(5 + 2 \sqrt{6} )(5 - 2 \sqrt{6} )}  \\

  • (a + b)(a - b) = a² - b²

  • Where, a = 5 and b = 26.

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{(5 {)}^{2} - (2 \sqrt{6}  {)}^{2}  }  \\

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{25 - (2 \sqrt{6} {)}^{2}  }  \\

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{25 -  {2}^{2} ( \sqrt{6  }  {)}^{2} }  \\

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{25 - 4 \times 6}  \\

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{25 - 24}  \\

 \rm  \longrightarrow \:  \frac{5 - 2 \sqrt{6} }{1}  \\

Remaimber: Anything divided by one gives itself.

  \bf  \longrightarrow \: 5 - 2 \sqrt{6}  \\

 \bf \: Hence, the \:  denominator  \: is  \: rationalised. \\

  • I hope it's help you.☺
Similar questions