Math, asked by avikawankar16, 5 hours ago

sin^-1(2^x)=?differentiate



Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {sin}^{ - 1} {2}^{x}

Let assume that

\rm :\longmapsto\: y = {sin}^{ - 1} {2}^{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx} y =\dfrac{d}{dx} {sin}^{ - 1} {2}^{x}

We know,

\boxed{\tt{ \dfrac{d}{dx}[f(g(x)] = f'[g(x)]\dfrac{d}{dx}g(x) \: }}

and

\boxed{\tt{ \dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 -  {( {2}^{x}) }^{2} } }\dfrac{d}{dx}{2}^{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{ \sqrt{1 - {4}^{x}} } \:  \times {2}^{x} log_{e}(2)

 \purple{\rm\implies \:\boxed{\tt{ \:  \:  \:  \:  \:  \:  \dfrac{d}{dx} {sin}^{ - 1}{2}^{x}  =  \frac{{2}^{x} log_{e}(2) }{ \sqrt{1 - {4}^{x}} } \:  \:  \: \:   \:  }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions