Math, asked by kshitizmaurya6, 7 months ago

sin-1(4x)+sin-1(3x)=-π\2​

Answers

Answered by dkmishra701
0

Answer:

Inverse Circular Function

Formula:

sin^{-1}x+sin^{-1}y=sin^{-1}[x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}]sin

−1 x+sin −1 y=sin −1 [x 1−y 2 +y 1−x 2 ]

Now we solve the problem:

\quad sin^{-1}(4x)+sin^{-1}(3x)=-\frac{\pi}{2}sin

−1 (4x)+sin −1 (3x)=− 2π

\to sin^{-1}[4x\sqrt{1-9x^{2}}+3x\sqrt{1-16x^{2}}]=-\frac{\pi}{2}→sin

−1 [4x 1−9x 2 +3x 1−16x 2 ]=− 2π

\to 4x\sqrt{1-9x^{2}}+3x\sqrt{1-16x^{2}}=sin(-\frac{\pi}{2})=-1→4x

1−9x 2 +3x 1−16x 2 =sin(− 2π )=−1

\to 4x\sqrt{1-9x^{2}}+1=-3x\sqrt{1-16x^{2}}→4x

1−9x

2

+1=−3x 1−16x 2

Squaring both sides, we get:

\quad 16x^{2}(1-9x^{2})+8x\sqrt{1-9x^{2}}+1=9x^{2}(1-16x^{2})16x

2 (1−9x 2 )+8x 1−9x 2 +1=9x 2 (1−16x 2 )

\to 16x^{2}-144x^{4}+8x\sqrt{1-9x^{2}}+1=9x^{2}-144x^{4}→16x

2 −144x 4 +8x 1−9x 2 +1=9x 2 −144x 4

\to 8x\sqrt{1-9x^{2}}=-7x^{2}-1→8x

1−9x 2 =−7x 2 −1

Squaring both sides, we get:

\quad 64x^{2}(1-9x^{2})=49x^{4}-14x^{2}+164x

2 (1−9x 2 )=49x 4 −14x 2 +1

\to 64x^{2}-576x^{4}=49x^{4}-14x^{2}+1→64x

2 −576x 4 =49x 4 −14x 2 +1

\to 625x^{4}-50x^{2}+1=0→625x

4 −50x 2 +1=0

\to (25x^{2}-1)^{2}=0→(25x

2 −1) 2 =0

Either 25x^{2}-1=025x 2

−1=0 or, 25x^{2}-1=025x 2 −1=0

[tex]\implies \boxed{x=\pm \frac{1}{5},\:\pm \frac{1}{5}}⟹

x=±

51 ,± 51

This is the required solution.

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \:  \star \large \red{ \bold{ \underline{ \underline{answer : }}}}

 \:  \:  \large  \orange { \bold{ \underline{given \: equation}}} \to

 \:   \\ \ggg \bf{ {sin}^{ - 1} (4x) +  {sin}^{ - 1} (3x) =  \frac{ - \pi}{2}}

 \bigstar \large \green{ \bold{ \underline{ \underline{step \: by \: step \: explaination}}}}

 \:   \\ \implies \displaystyle \sf{ {sin}^{ - 1} (4x) +  {sin}^{ - 1} (3x) =  \frac{ - \pi}{2} }

 \:  \implies \displaystyle \sf {sin}^{ - 1} (4x + 3x) =  \frac{ - \pi}{2}

  \:  \implies \displaystyle \sf{ (4x + 3x) = sin( \frac{ - \pi}{2} )}

 \:  \:  \implies \displaystyle \sf{(7x) =  - 1}

 \:  \:  \implies \displaystyle \sf{x =  \frac{ - 1}{7} }

 \:  \:  \underline {\boxed{  \boxed{ \bf{the \: answer \: will \: be \:  \frac{ - 1}{7} }}}}

Similar questions