Math, asked by AnushkaSolanki, 1 year ago

sin-1 dy/dx = x+y solve the following differential equation?

Attachments:

Answers

Answered by Sanchari98
95
Here's the solution to your question.
Attachments:
Answered by sk940178
16

Answer:

-\frac{2}{tan\frac{x+y}{2}+1 } =x+c

Step-by-step explanation:

We have, Sin¬1(\frac{dy}{dx}) = x+y

\frac{dy}{dx}=Sin(x+y) ...... (1)

To solve this differential equation, assume

x+y =z

Now, differentiating both sides with respect to x, we get,

1+\frac{dy}{dx}=\frac{dz}{dx}

\frac{dy}{dx}=\frac{dz}{dx}-1

Hence, the equation (1) becomes

\frac{dz}{dx}-1=Sinz

\frac{dz}{dx}=1+ Sinz

\frac{dz}{1+Sinz}=dx

Integrating both sides we get

⇒ ∫\frac{dz}{1+Sinz}= x+c {Where c is an integration constant}

⇒∫\frac{Sec^{2}\frac{z}{2} dz }{Sec^{2}\frac{z}{2}+2 tan\frac{z}{2}   }=x+c

{Since, Sin2x= 2Sinx Cosx}

⇒∫\frac{2d(tan\frac{z}{2} )}{tan^{2}\frac{z}{2}+2 tan\frac{z}{2} +1  }= x+c

{ Since, Sec^{2}x- tan^{2}x=1}

⇒2∫\frac{d(tan\frac{z}{2}+1 )}{(tan\frac{z}{2} +1)^{2} } =x+c

-\frac{2}{tan\frac{z}{2}+1 } =x+c

Again putting the value of z, we get

-\frac{2}{tan\frac{x+y}{2}+1 } =x+c (Answer)

Similar questions