Math, asked by TbiaSupreme, 1 year ago

sin⁻¹√x/x+a ,Integrate the given function defined on proper domain w.r.t. x.

Answers

Answered by rohitkumargupta
3
HELLO DEAR,

put x = atan²t so that dx = (2asec²t*tant)dt.

therefore,
\bold{\int{sin^{-1}\sqrt{\frac{x}{a + x}}}\,dx}

\bold{= \int{sin^{-1}[\sqrt{\frac{atan^2t}{a(1 + tan^2t)}}]2asec^2t.tant}\,dt}

\bold{= 2a\int{t(sec^2t.tant)}\,dt}

\bold{= 2a[t.1/2tan^2t - \int{1.1/2tan^2t}\,dt]}

[integrating by parts and using \bold{\int{sec^2t.tant}\,dt = 1/2tan^2t}]

= at(tan²t) - a\bold{\int{(sec^2t - 1)}\,dt}

= at(tan²t) - \bold{a\int{sec^2t}\,dt + a\int{1}\,dt}

= at(tan²t) - atant + at + C

\bold{=a(tan^{-1}\sqrt{x \over a})*(x/a) - a \sqrt{x \over a} + atan^{-1}\sqrt{x \over a} + C}

\bold{=xtan^{-1}\sqrt{x \over a} - \sqrt{ax} + atan^{-1}\sqrt{x \over a} + C}

I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions