Math, asked by TbiaSupreme, 1 year ago

tan⁻¹√1-x/√1+x ,Integrate the given function defined on proper domain w.r.t. x.

Answers

Answered by rohitkumargupta
5
HELLO DEAR,

put x = cost so that dx = -sint dt.

therefore, \sf{\int} tan^{-1} √(1 - x)/√(1 + x) dx = \sf{\int tan^{-1}x \sqrt{(1 - cost) \over (1 + cost)}(-sint)\,dt}

\sf{= \int tan^{-1}x{\sqrt{{2sin^2(t/2)\over 2cos^2(t/2)}}(-sint)\,dt}}

\sf{= \int[tan^{-1}x(tan{t \over 2}](-sint)\,dt = -1/2\int{t(sint)}\,dt}

\sf{= -1/2[t(-cost) - \int{1.(-cost)\,dt}]}
[integrating by parts]

\sf{=1/2tsint - 1/2siny + c}\\ \\ \sf{1/2x(cos^{-1}x) - 1/2\sqrt{1 - x^2} + c.}

I HOPE ITS HELP YOU DEAR,
THANKS
Answered by abhi178
3
we have to find the value of \int{tan^{-1}\sqrt{\frac{1-x}{1+x}}}\,dx


\int{tan^{-1}\sqrt{\frac{1-x}{1+x}}}\,dx

= \int{tan^{-1}\sqrt{\frac{(1-x)^2}{(1-x^2}}}\,dx

=\int{tan^{-1}\frac{1-x}{\sqrt{1-x^2}}}\,dx

can we assume x = cos\theta
differentiate with respect to x,
dx=-sin\theta.d\theta

= \int{tan^{-1}\frac{1-cos\theta}{\sqrt{1-cos^2\theta}}}\,(-sin\theta.d\theta)

=\int{-sin\theta.tan^{-1}\frac{2sin^2\theta/2}{sin\theta}}\,d\theta

=\int{-sin\theta.tan^{-1}\frac{2sin^2\theta/2}{2sin\theta/2.cos\theta/2}}\,d\theta

=\int{-sin\theta.tan^{-1}(tan\theta/2)}\,d\theta

=-\int{sin\theta.\frac{\theta}{2}}\,d\theta

=-\frac{1}{2}\int{\theta.sin\theta}\,d\theta
use integration by part ,

=-\frac{1}{2}[\theta.-cos\theta+sin\theta]

now, put \theta=cos^{-1}x

=-\frac{1}{2}[-xcos^{-1}x+sin(cos^{-1}x)]
Similar questions