Math, asked by karthikkammala, 1 year ago

sin 135º - cos 240°
sin 135° + cos 240°
= a + √b, then b=​

Answers

Answered by ihrishi
57

Step-by-step explanation:

sin \:  {135}^{0} \:  -  \: cos \:  {240}^{0} \\ sin \:  {135}^{0} \:   +   \: cos \:  {240}^{0}  \\  = a \:  +  \:  \sqrt{b}  \\ adding \: both \:  \\ 2 \: sin \:  {135}^{0} \:   =  a \:  +  \:  \sqrt{b} \:  \\ 2 \: sin \:  ({180}^{0} -  {45}^{0})\:   =  a \:  +  \:  \sqrt{b} \:  \\ 2 \: sin \:  {45}^{0}\:   =  a \:  +  \:  \sqrt{b} \\ 2 \times  \frac{1}{ \sqrt{2} }  =  \: a \:  +  \:  \sqrt{b} \:  \\  \sqrt{2}  = a \:  +  \:  \sqrt{b} \\ 0 \:  +  \sqrt{2}  = a \:  +  \:  \sqrt{b} \:  \\ equating \: both \: sides \:  \\ a = 0 \\  \sqrt{b}  =  \sqrt{2}  \\  \implies \: b \:  =  \: 2

Mark me as brainliest

Similar questions