sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°
Answers
Answered by
17
Answer:
We have to prove that,
sin 18° cos 39° + sin 6° cos 15° = sin 24° cos 33°
L.H.S.
= sin 18° cos 39° + sin 6° cos 15°
( ∵ 2sinA cosB = sin(A + B) + sin(A - B) )
( ∵ sin (-x) = -sin x )
Now, Let X + Y = 57 and X - Y = 9
By adding,
2X = 66 ⇒ X = 33
By subtracting,
2Y = 48 ⇒ Y = 24
Again by the formula,
2sinA cosB = sin(A + B) + sin(A - B)
= R.H.S.
Hence, proved....
Similar questions