Math, asked by khushbuchowdhury2000, 11 months ago

Sin 18°+ tan 72° - cos 72°/ cosec 75° + cot 18°- sec 15° = 1/2

Answers

Answered by pinquancaro
5

Answer:

\frac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}=1

Step-by-step explanation:

Given : Expression \frac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}

To find : Solve the expression ?

Solution :

\frac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}

We can write it as,

=\frac{\sin 18^\circ+\tan 72^\circ-\cos (90-18)^\circ}{\csc (90-15)^\circ+\cot 18^\circ-\sec 15^\circ}

We know, \cos(90-\theta)=\sin\theta and \csc(90-\theta)=\sec\theta

=\frac{\sin 18^\circ+\tan 72^\circ-\sin 18^\circ}{\sec 15^\circ+\cot 18^\circ-\sec 15^\circ}

=\frac{\tan 72^\circ}{\cot 18^\circ}

=\frac{\tan (90-18)^\circ}{\cot 18^\circ}

We know, \tan(90-\theta)=\cot\theta

=\frac{\cot 18^\circ}{\cot 18^\circ}

=1

Therefore, \frac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}=1

Answered by FelisFelis
0

\dfrac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}=1

Step-by-step explanation:

In order to solve the provided expression use the identity:

\cos(90-\theta)=\sin\theta, \\\tan(90-\theta)=\cot\theta\\ \csc(90-\theta)=\sec\theta

Consider the provided equation.

\dfrac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}

The equation can be written as:

=\dfrac{\sin 18^\circ+\tan (90-18)^\circ-\cos (90-18)^\circ}{\csc (90-15)^\circ+\cot 18^\circ-\sec 15^\circ}

By using the identities.

=\dfrac{\sin 18^\circ+\tan (90-18)^\circ-\cos (90-18)^\circ}{\csc (90-15)^\circ+\cot 18^\circ-\sec 15^\circ}

=\dfrac{\cot 18^\circ}{\cot 18^\circ}\\\\=1

Therefore, \dfrac{\sin 18^\circ+\tan 72^\circ-\cos 72^\circ}{\csc 75^\circ+\cot 18^\circ-\sec 15^\circ}=1

#Learn more

What are the values of all six ratios in trigonometry

https://brainly.in/question/1695428

Similar questions
Math, 11 months ago