sin^2 12+ sin^2 21 + sin ^2 39 + sin ^2 48 - sin ^2 9 - sin ^2 18 equals to ?
Answers
Answer:
Sin^2 12+ sin^2 21 + sin ^2 39 + sin ^2 48 - sin ^2 9 - sin ^2 18 equals to ?
Sin²12°+sin²21°+sin²39°+sin²48°-sin²9°-sin²18°
sin²12°+sin²21°+(sin²38°-sin²9°)+(sin²48°-sin²18°)
=>sin²12°+sin²21°+sin(48°)sin(30°)+sin(66°)sin(30°)
=>sin²12°+sin²21°+½sin48°+½sin66°
=>½(1-cos24°)+½(1-cos42°)+½cos42°+½cos24°
=>1
Answer:
....
You need to remember and use the half angle formula, sin^2 alpha = (1 - cos 2 alpha)/2 ,such that:
sin^212^o = (1 - cos 24^o)/2
sin^2 21^o = (1 - cos 42^o)/2
sin^2 39^o = (1 - cos 78^o)/2
sin^2 48^o = (1 - cos 96^o)/2
sin^2 9^o = (1 - cos 18^o)/2
sin^2 18^o = (1 - cos 36^o)/2
1 - cos 24^o + 1 - cos 42^o +1 - cos 78^o + 1 - cos 96^o = 2 + 1 - cos 18^o + 1 - cos 36^o
Reducing like terms yields:
cos 24^o + cos 42^o + cos 78^o + cos 96^o = cos 18^o + cos 36^o
You need to combine the terms such that:
(cos 24^o + cos 96^o) + (cos 42^o + cos 78^o) = (cos 18^o + cos 36^o)
You need to convert the sum into product such that:
cos 24^o + cos 96^o = 2cos((24^o + 96^o)/2)*cos((24^o- 96^o)/2)
cos 24^o + cos 96^o = 2cos 60^o*cos(-36^o)
You need to remember that the cosine function is even, hence cos(-36^o)= cos(36^o)
cos 24^o + cos 96^o = 2cos 60^o*cos(36^o)
You need to convert the sum into product such that:
cos 42^o + cos 78^o = 2cos((42^o + 78^o)/2)*cos((42^o - 78^o)/2)
cos 42^o + cos 78^o = 2cos 60^o*cos(-18^o) cos 42^o + cos 78^o = 2cos 60^o*cos18^o
cos 18^o + cos 36^o = 2cos((18^o + 36^o)/2)*cos((18^o - 36^o)/2)
Substituting the products into the sum above yields:
2cos 60^o*cos(36^o) + 2cos 60^o*cos18^o = 2cos 27^o*cos 9^o
2cos 60^o*(cos 18^o + cos 36^o) = cos 18^o + cos 36^o
Reducing cos 18^o + cos 36^o both sides yields:
2cos 60^o = 1 => cos 60^o = 1/2 => 1/2 = 1/2
Hence, the last line proves that the given expression is an identity.