Math, asked by kushalmanshrestha300, 4 days ago

sin^2(180/4-theta)=1/2(1-Sin2theta)​

Answers

Answered by mathdude500
2

Given Question :-

Prove that

\rm \:  {sin}^{2}\bigg(\dfrac{180\degree }{4}  - \theta \bigg) = \dfrac{1}{2}\bigg(1 - sin2\theta  \bigg)  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \:  {sin}^{2}\bigg(\dfrac{180\degree }{4}  - \theta \bigg)  \\

can be rewritten as

\rm \:   =  \: {sin}^{2}\bigg(45\degree   - \theta \bigg)  \\

\rm \:   =  \: \dfrac{1}{2} \times 2 {sin}^{2}\bigg(45\degree   - \theta \bigg)  \\

We know

\boxed{ \rm{ \:cos2x = 1 -  {2sin}^{2}x \: }} \\

So, using this result, we have

\rm \:  =  \: \dfrac{1}{2} \bigg(1  -  cos2(45\degree  - \theta )\bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(1  -  cos(90\degree  - 2\theta )\bigg)

\rm \:  =  \: \dfrac{1}{2} \bigg(1  -  sin2\theta \bigg)

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \:  {sin}^{2}\bigg(\dfrac{180\degree }{4}  - \theta \bigg) = \dfrac{1}{2}\bigg(1 - sin2\theta  \bigg)  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered} {\boxed{ \begin{array}{c} \underline{\underline{  \text{Additional \: lnformation}}} \\  &  \rm \: sin2x  \: =  2 \: sinx \: cosx\:\\ &  \rm \: cos2x = 1 -  {2sin}^{2}x \\ &  \rm \: cos2x =  {2cos}^{2}x - 1 \\ &  \rm \: cos2x =  {cos}^{2}x -  {sin}^{2}x \\ &  \rm \:tan2x =  \dfrac{2tanx}{1 -  {tan}^{2} x} \\ &  \rm \: sin2x =  \frac{2tanx}{1 +  {tan}^{2}x } \\ &  \rm \:sin3x = 3sinx -  {4sin}^{3}x \\ &  \rm \: cos3x =  {4cos}^{3}x - 3cosx \\ &  \rm \: tan3x =  \dfrac{3tanx -  {tan}^{3} x}{1 -  {3tan}^{2}x}  \end{array}}}\end{gathered}

Similar questions