Math, asked by Sumy6349, 10 months ago

Sin^2 63° + sin^2 27° + cos^2 17° + cos^2 73°

Answers

Answered by choudhuryabhinab82
2

Answer:

= sin²63° + sin²27° + cos²17°+ cos²73°

= sin²90 + cos²90

= 1²+0²

= 1

please give my answer the brainlyest and follow me

Answered by TheEmeraldBoyy
43

{\huge{\boxed{\sf{\green{❥✰Question✰}}}}}

:-\sf \dfrac{ {sin}^{2} 63 + {sin}^{2}27 }{cos {}^{2} 17 + {cos}^{2} 73} cos 2 17+cos 2 73sin 2 63+sin 2 27

{\huge{\boxed{\sf{\red{❥✰Answer✰}}}}}

Given :-

\begin{gathered}\longmapsto \sf\bold{\pink{\dfrac{{sin}^{2}63 + {sin}^{2}27}{{cos}^{2}17 + {cos}^{2}73}}}\\\end{gathered} ⟼ cos 2 17+cos 2 73sin 2 63+sin 2 27

Solution :-

\leadsto \sf \dfrac{{sin}^{2}63 + {sin}^{2}27}{{cos}^{2}17 + {cos}^{2}73}⇝ cos 2 17+cos 2 73sin 2 63+sin 2 27

\implies \sf \dfrac{{sin}^{2}63 + {sin}^{2}(90 - 63)}{{cos}^{2}17 + {cos}^{2}(90 - 17)}⟹ cos 2 17+cos 2 (90−17)sin 2 63+sin 2 (90−63)

As we know that,

\mapsto \sf sin(90 - \theta) =\: cos\theta↦sin(90−θ)=cosθ

\mapsto \sf cos(90 - \theta) =\: sin\theta↦cos(90−θ)=sinθ

\implies \sf \dfrac{{sin}^{2}63 + {cos}^{2}63}{{cos}^{2}17 + {sin}^{2}17}⟹ cos 2 17+sin 2 17sin 2 63+cos 2 63

Again, as we know that,

\mapsto \sf {sin}^{2}A + {cos}^{2}A =\: 1↦sin 2 A+cos 2 A=1

\implies \sf \dfrac{\cancel{1}}{\cancel{1}}⟹ 1​	 1

\implies \sf\boxed{\bold{\red{1}}}⟹ 1

\sf\boxed{\bold{\green{\therefore\: The\: answer\: is\: 1.}}}

\rule{150}{2}

∴The answer is 1.

Some Important Formula :

mapsto \sf\bold{\purple{cos(90 - \theta) =\: sin\theta}}↦cos(90−θ)=sinθ\mapsto \sf\bold{\purple{ sec(90 - \theta) =\: cosec\theta}}↦sec(90−θ)=cosecθ\mapsto \sf\bold{\purple{tan(90 - \theta) =\: cot\theta}}↦tan(90−θ)=cotθ\mapsto \sf\bold{\purple{cosec(90 - \theta) =\: sec\theta}}↦cosec(90−θ)=secθ\mapsto \sf\bold{\purple{sin(90 - \theta) =\: cos\theta}}↦sin(90−θ)=cosθ\mapsto \sf\bold{\purple{cot(90 - \theta) =\: tan\theta}}↦cot(90−θ)=tanθ

Thanks!

Similar questions