Math, asked by jaiswalanish60, 9 months ago

sin^2 A + sin^2 B + sin^2 C​

Answers

Answered by jagadhes1979
4

Answer:

sin^2A+SIN^2B+SIN^2C

SIN^2(A+B+C)

please mark it as a brainliest answer

Answered by balasaisivakumar
0

Answer:

2

Step-by-step explanation:

sin

2

A

+

sin

2

B

+

sin

2

C

=

2

1

sin

2

A

+

1

sin

2

B

sin

2

C

=

0

cos

2

A

+

cos

2

B

sin

2

C

=

0

2

cos

2

A

+

2

cos

2

B

2

sin

2

C

=

0

1

+

cos

2

A

+

1

+

cos

2

B

2

(

1

cos

2

C

)

=

0

1

+

cos

2

A

+

1

+

cos

2

B

2

+

2

cos

2

C

=

0

cos

2

A

+

cos

2

B

+

2

cos

2

C

=

0

2

cos

(

A

+

B

)

cos

(

A

B

)

+

2

cos

2

C

=

0

cos

(

π

C

)

cos

(

A

B

)

+

cos

2

C

=

0

cos

C

cos

(

A

B

)

+

cos

2

C

=

0

cos

C

cos

(

A

B

)

cos

2

C

=

0

cos

C

cos

(

A

B

)

cos

C

cos

(

π

(

A

+

B

)

)

=

0

cos

C

[

cos

(

A

B

)

+

cos

(

A

+

B

)

]

=

0

cos

C

2

cos

A

cos

B

=

0

So any of  

A

,

B

and

C

must be  

90

If  

A

=

90

then  

sin

2

A

=

1

And then  

B

+

C

=

90

So  

sin

2

B

+

sin

2

C

=

sin

2

(

π

2

C

)

+

sin

2

C

=

cos

2

C

+

sin

2

C

=

1

Hence  

sin

2

A

+

sin

2

B

+

sin

2

C

=

2

is satisfied for any right angled triangle.

Similar questions