Math, asked by usmani40, 1 year ago

sin 22° cos 38° + cos 22° sin38°​

Answers

Answered by Anonymous
21

Step-by-step explanation:

sin 22° cos 38° + cos 22° sin38°

If we observe its generally a formula of

Sin(a+b).

so applying the formula

sin(22+38)

sin(60°)

√3/2

hope it helps uh!

Answered by JeanaShupp
7

The value of \sin 22^\circ \cos 38^\circ+ \cos 22^\circ \sin 38^\circ is \dfrac{\sqrt{3} }{2}

Step-by-step explanation:

To find: The value of sin 22° cos 38° + cos 22° sin 38°

Now as we know

\sin (x+y) = \sin x \cos y +\cos x \sin y

Therefore

x= 22° and y = 38°

We get ​

\sin 22^\circ \cos 38^\circ+ \cos 22^\circ \sin 38^\circ

can be written as

\sin (22^\circ=38^\circ) = \sin 60^\circ =\dfrac{\sqrt{3} }{2}

Hence, the value of \sin 22^\circ \cos 38^\circ+ \cos 22^\circ \sin 38^\circ is \dfrac{\sqrt{3} }{2}

#Learn more

Cos 36 cos 54- sin 36 sin 54=?

brainly.in/question/2797764

Similar questions