Math, asked by bhairavs501, 3 months ago

sin 25° / cos 65° + cosec 34°/ sec 56° - 2cos 43° cosec 47° / tan 10° • tan 40° • tan 50° • tan 80°​

Attachments:

Answers

Answered by Hellion
64

\huge{\textbf{\textsf{{\color{navy}{Aɴ}}{\purple{sᴡ}}{\pink{ᴇʀ}}{\color{pink}{:}}}}}

Check attachment :)

\mathcal{\fcolorbox{cyan}{black}{\pink{Final Answer = 0}}}

Attachments:
Answered by Agastya0606
0

The answer to the given trigonometrical expression is 0.

Given,

The trigonometrical expression = \frac{sin25}{cos65} +\frac{cosec34}{sec56}-\frac{2cos43 * cosec47}{tan10*tan40*tan50*tan80}

To Find,

The value of the given trigonometrical expression.

Solution,

Now, let's solve the question using trigonometrical identities.

= \frac{sin25}{cos65} +\frac{cosec34}{sec56}-\frac{2cos43 * cosec47}{tan10*tan40*tan50*tan80}.

Now, we will use trigonometrical identities,

cos(90 - θ) = sinθ

sec(90 - θ) = cosecθ

tan(90 - θ) = cotθ

=  \frac{sin25}{sin25} +\frac{cosec34}{cosec34}-\frac{2cos43 * sec43}{cot80*tan40*cot40*tan80}

on eliminating, we get,

= 1 + 1 \frac{2cos43\frac{1}{cos43} }{tan80\frac{1}{tan80}tan40 \frac{1}{tan40} }.

We know that secθ = 1/cosθ and cotθ = 1/tanθ

On solving, we get,

= 1 + 1 -2

= 2 - 2

= 0.

The answer to the given trigonometrical expression is 0.

#SPJ2

Similar questions