Sin 2a+sin2b-sin2c=4cosacosbsinc
Answers
Answered by
40
Hey !!!
from LHS
Sin2A + Sin2B - Sin2C
We know that ,
SinC + SinD = 2sin(C+D)/2 *cos ( C-D)/2
since ,
or, 2sin ( 2A + 2B)/2* cos (2A-2B)/2 - sin2C
or, 2sin(A + B) *cos(A-B) - 2sinC *cosC
or, 2sin( 180°-C) * cos(A - B) -2sinC * cosC
or, 2sinC * cos ( A - B) - 2sinC * cosC
or, 2sinC { cos(A-B) - cos(180°-( A + B) }
or, 2sinC { cos( A- B) +cos ( A+B) }
using formula
↘cosC +cosD = 2cos(C+ D)/2* cos ( C- D) /2
taking cos(A+B) as sinC and cos ( A- B) = cosD
or, 2sinC {2cos(A-B+A+B)/2 * cos ( A+B -A+ B)/2
or, 2sinC{2cos2A/2 * cos2B/2 }
or, 4sinC * cosA *cosB
, 4cosA*cosB*sinC
so ,
LHS = RHS prooved ♻
____________________________
Hope it helps you ;!!
@Rajukumar111
from LHS
Sin2A + Sin2B - Sin2C
We know that ,
SinC + SinD = 2sin(C+D)/2 *cos ( C-D)/2
since ,
or, 2sin ( 2A + 2B)/2* cos (2A-2B)/2 - sin2C
or, 2sin(A + B) *cos(A-B) - 2sinC *cosC
or, 2sin( 180°-C) * cos(A - B) -2sinC * cosC
or, 2sinC * cos ( A - B) - 2sinC * cosC
or, 2sinC { cos(A-B) - cos(180°-( A + B) }
or, 2sinC { cos( A- B) +cos ( A+B) }
using formula
↘cosC +cosD = 2cos(C+ D)/2* cos ( C- D) /2
taking cos(A+B) as sinC and cos ( A- B) = cosD
or, 2sinC {2cos(A-B+A+B)/2 * cos ( A+B -A+ B)/2
or, 2sinC{2cos2A/2 * cos2B/2 }
or, 4sinC * cosA *cosB
, 4cosA*cosB*sinC
so ,
LHS = RHS prooved ♻
____________________________
Hope it helps you ;!!
@Rajukumar111
ishan0000:
good,dude
Answered by
7
Answer:
4cosAcosBsinC
Step-by-step explanation:
Here is your answer.
Attachments:
Similar questions